## CONTENTS | | Page | |-------------------------------------|--------| | Letter of transmittal | | | Explanation | | | Acknowledgements | | | Arkansas County | | | · | 1 | | 1. La Grue Spring | l<br>1 | | 2. Cold SpringBaxter County | 1 | | 3. Cotter Spring | 1 | | 4. Hogan Spring | 1 | | 5. Lithia Spring | 1 | | 6. Big Spring | 1<br>2 | | Benton County | 2 | | • | 2 | | 7. Siloam Springs | 2<br>3 | | 8. Springtown Spring | 3<br>4 | | 9. Little Clifty Creek Spring | | | 10. Diamond Spring | 4 | | 11. Esculapia Springs | 5 | | 12. Silver Spring 13. Frisco Spring | 6 | | - · · | 6 | | 14. Prairie Creek Spring | 7 | | 15. Silver Springs | 7 | | 16. Bath Rock Spring | 7 | | 17. Mossy Spring | 7 | | 18. Rogers Springs | 8 | | 19. Pump Spring | 8 | | 20. Diamond Spring | 9 | | 21. Electric Spring | 9 | | 22. Lono Spring | 10 | | 23. Decatur Spring | 10 | | 24. Frisco Spring | 12 | | 25. Cave Spring | 12 | | 26. Jefferson Spring | 12 | | 27. Park Springs | 12 | | 28. Bentonville Springs | 12 | | 29. Garfield Spring | 13 | | 30. Bayan Spring | 14 | | 31. Spanish Treasure Spring | 14 | | 32. Sulphur Spring | 14 | | 33. Box Spring | 15 | | 34. Chambers Spring | 15 | | Boone County | | | 35. Valley Springs | 15 | | | Page | |---------------------------------------|------| | 36. Sulphur Spring | 16 | | 37. Fodder Stack Spring | 17 | | 38. Beauty Spring | 18 | | 39. Mitchell Springs | 18 | | 40. Twin Springs | 19 | | 41. Marble Falls Spring | 19 | | 42. Elixir Spring | 19 | | 43. Leag's Mineral Springs | 20 | | 44. Sulphur Springs | 21 | | 45. Blue Springs | 21 | | Calhoun County | | | 46. Holderness Spring | 21 | | 47. Hopeville Spring | 21 | | 48. Dr. W. A. Thomas's Mineral Spring | 22 | | Carroll County | | | 49. Poison Spring | 22 | | 50. Berryville Spring | 22 | | 51. Bunch Spring | 22 | | 52. Davis Spring | 22 | | 53. Eureka Springs | 23 | | 54. Ozark Spring | 26 | | 55. Blue Spring | 27 | | Clark County | | | 56. State Salt Spring | 27 | | 57. State Salt Spring | 28 | | 58. State Salt Spring | 28 | | 59. State Salt Spring | 28 | | 60. State Salt Spring | 28 | | 61. Saline Spring | 28 | | 62. Davidson's Camp Ground Spring | 29 | | 63. Mineral Springs | 29 | | 64. Whelen Springs | 29 | | Cleburne County | | | 65. Quitman Spring | 29 | | 66. Sugar Loaf Spring (Arsenic | 29 | | 67. Black Sulphur Spring | 31 | | 68. Red Sulphur Spring | 32 | | 69. Eye Spring | 32 | | 70. White Sulphur Spring | 33 | | 71. Chalybeate Spring | 34 | | 72. Pearson Spring | 35 | | Cleveland County | | | 73. Gum Springs | 36 | | | Page | |------------------------------------|------| | Columbia County | | | 74. Macedonia Spring | 36 | | Conway County | | | 75. Stillman Spring | 36 | | 76. Springfield Town Spring | 36 | | Crawford County | | | 77. Quesenbury and Ferring Springs | 37 | | 78. Dean Springs | 37 | | 79. Fine Springs | 37 | | 80. Stewart Spring | 37 | | 81. Oliver Spring | 37 | | 82. Dripping Springs | 37 | | 83. Mulberry Spring | 38 | | 84. Shepherd Spring | 38 | | 85. Mineral Springs | 38 | | 86. State Salt Spring | 38 | | 87. Winfrey Spring | 38 | | 88. Locke Spring | 38 | | 89. Cold Spring | 39 | | 90. Saline Spring | 39 | | Dallas County | | | 91. Mattocks Spring | 39 | | Faulkner County | | | 92. Riggin Spring | 40 | | 93. Pinnacle Spring | 40 | | Franklin County | | | 94. Manitou Spring | 40 | | 95. Watalula Spring | 41 | | 96. State Salt Spring | 41 | | 97. Fern Spring | 42 | | 98. Chalybeate Spring | 42 | | Fulton County | | | 99. Mammoth Spring | 42 | | Garland County | | | 100. Hot Springs | 43 | | 101. Mountain Valley Spring | 45 | | 102. Grandma Chase's Springs | 46 | | 103. McLendon Health Spring | 47 | | 104. Big Chalybeate Spring | 48 | | 105. Red Chalybeate Spring | 49 | | 106. Gillen's White Sulphur Spring | 50 | | 107. Blanco Spring | 51 | | 108. Crystal Springs | 52 | | | | Page | |---------------------|----------------------------|------| | 109. | Potash Sulphur Springs | 52 | | 110. | Sour Rock Spring | 54 | | 111. | Three Sisters Springs | 55 | | 112. | Happy Hollow | 55 | | 113. | Happy Hollow Chalybeate | 56 | | 114. | Sleepy Water | 58 | | 115. | De Soto Spring | 58 | | 116. | Lithox Spring | 58 | | 117. | Radio Magnesia Springs | 59 | | 118. | Long Spring | 60 | | 119. | Sulphur Spring | 61 | | 120. | Lithia Springs | 61 | | 121. | Dyke Spring | 62 | | Hot Spring Co | ounty | | | 122. | Sulphur Springs | 62 | | 123. | Chalybeate Springs | 62 | | 124. | Dove Park Spring-No. 1 | 62 | | 125. | Dove Park Spring-No. 2 | 64 | | 126. | Dove Park Spring-No. 3 | 64 | | 127. | Dove Park Spring-No. 4 | 65 | | 128. | Fairchild Springs | 66 | | Howard Cour | nty | | | 129. | Baker Springs | 67 | | 130. | Baker's Sulphur Spring | 67 | | 131. | Mineral Spring | 67 | | Independence | e County | | | 132. | Starnes No. 1 Spring | 68 | | 133. | Starnes No. 2 Spring | 69 | | 134. | Old Robert Morris Spring | 70 | | 135. | Earnheart Spring | 70 | | 136. | Walden Spring | 70 | | 137. | Big Spring | 71 | | 138. | Ferrell Cave Spring | 71 | | <b>Izard County</b> | | | | 139. | Blowing Spring | 71 | | 140. | Prim Spring | 71 | | 141. | Melbourne (Wideman) Spring | 71 | | 142. | Huron Spring | 72 | | Jackson Cour | • | | | 143. | Ross Spring | 72 | | 144. | Grandglaise Spring | 72 | | Little River C | County | | | 1.45 | a tra | Page | |-------------|---------------------------------------|------| | 145. | Salt Spring | 72 | | 146. | Big Springs | 72 | | 147. | King's Spring | 73 | | 148. | State Salt Springs | 73 | | Logan Count | • | | | 149. | Magazine Spring | 73 | | 150. | Gray's Spring | 74 | | 151. | National Spring | 75 | | Lonoke Cou | · · | | | 152. | Sandhill Spring | 76 | | 153. | Camp Ground Spring | 76 | | 154. | Quapaw Mineral Springs | 77 | | 155. | Mountain Spring | 77 | | Madison Co | | | | 156. | Phelon's Spring | 79 | | 157. | Denny's Spring (Horsetheif) | 79 | | 158. | Town Spring | 79 | | 159. | Withrow Spring | 79 | | Marion Cou | nty | | | 160. | De Soto Spring | 79 | | 161. | Intermittent Spring | 80 | | 162. | Saltpeter Cave Spring | 80 | | 163. | Stonewall Spring | 80 | | 164. | Jackson Spring | 80 | | 165. | Tutt & Everette Spring | 81 | | 166. | Kingdon Springs | 81 | | 167. | Greaver Spring | 81 | | 168. | Marble Falls Spring | 81 | | 169. | Crank's Spring | 82 | | Montgomery | y County | | | 170. | Black Spring | 82 | | 171. | Cox Spring | 82 | | 172. | Witherspoon Springs | 82 | | 173. | North Spring | 83 | | 174. | South Spring | 84 | | 175. | Hot Spring | 84 | | 176. | Warm Spring | 84 | | 177. | Mattock Spring | 85 | | 178. | | 85 | | 179. | · · · · · · · · · · · · · · · · · · · | 85 | | 180. | Iron's Sulphur Spring | 86 | | 181. | Collier Spring | 86 | | Nevada Cou | . • | | | | , | Page | |--------------------|---------------------------------------|-----------| | 182. | Judge Hubbard's Spring | 86 | | Newton Cou | nty | | | 183. | Spanish Piano Spring | 87 | | 184. | R. L. Syerfield Spring | 87 | | 185. | Edgemond Spring | 87 | | 186. | Saltpeter | 87 | | 187. | Tom Thumb Spring | 87 | | Ouachita Cor | 1 0 | | | 188. | Alum Spring | 89 | | 189. | Poison Spring | 89 | | Phillips Cour | nty | | | 190. | Big Spring | 89 | | Pike County | | | | 191. | Hopper Spring | 90 | | 192. | Royston Spring | 90 | | Poinsett Cou | nty | | | 193. | Dr. Patten's Spring | 90 | | <b>Polk County</b> | | | | 194. | Tannahill Spring | 91 | | 195. | Bethesda Springs | 91 | | 196. | Janssen Park Spring | 92 | | 197. | Dallas Town Spring | 93 | | 198. | Abernathy Spring | 93 | | 199. | Mine Creek Spring | 93 | | 200. | Silver World Tunnel Spring | 94 | | 201. | Blalock Springs | 94 | | 202. | Bard Spring | 95 | | 203. | Cold Spring | 95<br>0.7 | | 204. | Gilham Spring | 95<br>05 | | 205. | Bog Springs | 95 | | 206. | Tyra Springs | 96 | | 207. | Gray's Spring | 96 | | Pope County | | 06 | | 208.<br>209. | Gip Spring | 96<br>96 | | 209.<br>210. | State Salt Springs | 90<br>97 | | 210. | State Salt Springs Caglesville Spring | 97<br>97 | | 211. | | 97<br>97 | | Pulaski Cou | Shouse Spring | 71 | | 213. | Sterling Spring | 97 | | 213.<br>214. | Worthen Spring | 97<br>97 | | 214. | Boule Spring | 98 | | 216 | Exchange Spring | 98 | | | | Page | |---------------|-----------------------------|------| | 217. | Fones Spring | 98 | | 218. | Gum Spring | 98 | | 219. | Cascade Spring | 99 | | 220. | Radiant Springs | 99 | | 221. | Raleigh Spring | 99 | | 222. | Granite Mountain Spring | 100 | | 223. | Hernando Spring | 100 | | 224. | Hominy Hill Spring | 100 | | 225. | New Spring | 101 | | 226. | Watkins Springs | 102 | | 227. | Newton Spring (Purdom) | 103 | | 228. | Ravenden Springs | 103 | | 229. | Rice's Spring | 103 | | 230. | Elm Spring | 104 | | 231. | Maynard Spring | 104 | | 232. | Cox's Alum Spring | 105 | | 233. | Chalybeate Hill Spring | 105 | | 234. | Poteau Spring | 105 | | 235. | Wittsburg Spring | 106 | | 236. | Campbell Spring | 106 | | 237. | Kimes Spring | 106 | | 238. | Landis Spring | 106 | | 239. | Pruitts Spring | 106 | | 240. | Blowing Cave Spring | 107 | | 241. | Zach Spring | 107 | | Servier Count | y | | | 242. | Salt Spring | 107 | | 243. | State Salt Spring | 107 | | 244. | State Salt Spring | 107 | | 245. | Walnut Springs | 108 | | 246. | Norwoodville Spring | 108 | | 247. | State Salt Spring | 108 | | 248. | State Salt Spring | 108 | | 249. | State Salt Spring | 108 | | 250. | State Salt Spring | 109 | | 251. | Walnut Spring | 109 | | 252. | State Salt Spring | 109 | | Sharp County | | | | 253. | Evening Shade | 109 | | Stone County | | | | 254. | Bon Air (Chalybeate) Spring | 109 | | 255. | Sulphur Spring | 111 | | 256. | Lithia Spring | 111 | | | | Page | |--------------|-------------------------------|------| | 257. | Big Spring | 111 | | 258. | Mountain View Springs | 111 | | Union Count | • • | 111 | | 259. | Blanchard Spring | 111 | | Van Buren C | - · | 111 | | 260. | State Salt Spring | 111 | | 261. | Choctaw Spring | 112 | | 262. | Sugar Loaf Springs | 112 | | 263. | Rock House Spring | 112 | | Washington ( | | 112 | | 264. | Morrow's Spring | 112 | | 265. | Sulphur City Spring | 113 | | 266. | J. P. Neal Spring | 113 | | 267. | Fayetteville Spring | 113 | | 268. | William's Spring | 113 | | 269. | Cato's Spring | 114 | | 270. | Lewis Spring | 114 | | 271. | Blue Water Spring | 114 | | 272. | Johnson's Spring (Big Spring) | 114 | | 273. | Air Spring | 114 | | 274. | Springdale Spring No. 1 | 115 | | 275. | Springdale Spring No. 2 | 115 | | 276. | Shiloah Springs | 115 | | 277. | Elm Springs | 116 | | 278. | Sulphur Spring | 117 | | 279. | Kuykendall Spring | 117 | | 280. | Sulphur Spring | 117 | | White Count | ry | | | 281. | Essex Spring | 118 | | 282. | Beebe Spring | 118 | | 283. | Elliott Spring | 118 | | 284. | Griffin Spring | 118 | | 285. | Searcy Sulphur Spring | 119 | | 286. | Griffin Spring | 120 | | 287. | Armstrong Spring | 121 | | 288. | Bradford Spring | 122 | | 289. | Mineral Spring | 122 | | Yell County | | | | 290. | Chikalah Spring | 123 | | 291. | Sulphur Spring | 123 | | 292. | Chalybeate Spring | 123 | | 293 | North Dickens | 123 | | | | rage | |------|----------------------|------| | 294. | South Dickens Spring | 124 | | 295. | Darling Spring | 126 | | 296. | Gum Spring | 126 | Exems springs of lands votour in arearcas. Location Este, Flow | | | | • | | ė. | ACT STATE | | | |-------------|-------------------------------|-----------------------|-------------------|---------|------|--------------------------------------------|--------------------|----------------| | Courty | County : Rame of Conting | 1 Area | : Sec. Two. Rote. | Two | Arte | : Ethlors per day : Owner : Date at Source | 3 Owners s | Date of Source | | Stone | : Nountain View | : Hountain Viov, : | <b>S</b> | 151 | ā | 1 5,024,000 | s otty of Mess | 1957 | | Stone | s Blanchard Spring | s Oxark Est. Perest 5 | Test % | 既 | MTT. | 2,150,000 | <br>b. | 1957 | | Steam | Tavangaton Creek | 8 | 83 | 161 | 114 | 2,880,000 | in en e | 1957 | | Change | Busics wasten : | | ~ | 2 . 158 | 257 | 1,440,000 | n en ( | 1991 | | Washing ton | Sachingtons Johnston & Spring | 1 Johnson, Ark : 15 | . 35 | 172 | Ş | 2,745,967 | | 1891 | | Carroll | Carroll & Blue Spring | <b>4</b> ( <b>4</b> ) | # 5¢ | 218 | 272 | \$ 000,000,44 | s Boy P. Parithill | | | 7ulter | s Messeoth Spring | s Hammoth Spage | <b>&amp;</b> | 213 | 6 | 160,000,000 | Gity of Ben- | 1082 | | | • | | • | | | | Santage mos s | 182 | ## SEATER OF BELLINAS ## ARKANSAS GROLDOSCAL SURVEY George C. Branner State Geologies DATA ON SPRINGS IN ARKANSAS Compiled Under the Direction of George C. Branner State Geologist LITTLE ROCK #### ARKANSAS COUNTY #### No. 1 ## LA GRUE SPRINGS Sec. 35, T. 5 S., R. 2 W., 10 miles southeast of De Witt. La Grue Springs have a large flow and the water is used for medicinal purposes. W. Maxwell, County Surveyor, states that on the western border of the county, along Big Bayou Meto, springs are very few, whereas on the east side, along the tributaries of White River, they are numerous. Elev. 170 feet (approximately). (U. S. G. S. P 46) No. 2 ### COLD SPRING Sec. 1, T. 5 S., R. 2 W., 10 miles east of De Witt. Cold Spring has a large flow. Elev. 170 feet. (U. S. G. S. P 46) #### BAXTER COUNTY No 3 #### COTTER SPRING . Sec. 1, T. 18 N., 15 W., at Cotter. This spring bursts from the banks of White River and is said to be one of the largest springs in the state. It is a miniature Mamnoth Spring. The water is limpid and ice cold. Elev. 440.8 feet. (Arkansas Ozarks, p. 28) No. 4 #### HOGAN SPRING . $S_{\Xi}^{\frac{1}{2}}$ , Sec. 9, T. 19 N., R. 13 W., near Mountain Home. There is a fish rearing pond near by; the vicinity is used by sportsmen for camping. Elev. 809 feet. (Where to go in the Ozarks, p. 72) No. 5 #### LITHIA SPRING. SW<sup>1</sup><sub>4</sub>, Sec. 28, T. 19 N., R. 14 W., near Gassville. This is one of the few Zithia springs in Arkansas. Dr. B. F. Denton reports its discharge as 4320 gallons per day. For over half a century people have been visiting this spring for the benefit of its health-giving waters. It is on Highway 126. Elev. 720 feet (approximately). $\lambda$ ## Analysis of Water | Constituents | Grains per U.S. | Per cent of total | |-------------------------|-----------------|-------------------| | Charles as Cada | gallon | solids | | Chloride of Soda | 4.000 | 16.25 | | Bicarbonate of Iron | 1.100 | 4.47 | | Bicarbonate of Lithia | 2.130 | 8,66 | | Sulphate of Magnesia | •832 | 3.38 | | Sulphate of Lime (sol.) | •320 | 1.30 | | Sulphate of Alumina | 9.873 | 40.10 | | Sulphate of Zinc | 5.112 | 20.77 | | Phosphate of Soda | 1.246 | 5.07 | | Total | 24.613 | 100.00 | The above analysis is reported to have been made by Drs. R. J. Leonard and B. F. Denton of Louisville and St. Louis. (A. G. S. Rept., 1891, vol. 1, p. 61) No. 6 ## BIG SPRING . NW<sup>1</sup>/<sub>4</sub>, Sec. 3, T. 20 N., R. 14 W., 1 mile south of State Highway 5, 14 miles south of Gainsville, Mo. This spring issues from a cave owned by Gus Shade, it has a large flow and drains into Mountain Creek. It is also called Jenkins Cave Spring. Elev. about 1096 feet. (Information furnished by Zella Trumbo, Three Brothers, Ark.) ### BENTON COUNTY No. 7 #### SILOAM SPRINGS Sec. 6, T. 17 N., R. 33 W. These springs furnish the municipal water supply for the town of Siloam Springs. The water has no treatment. Discharge 375,000 gallons per day. Elev. 1105 feet. (Univ. of Ark. B 2, Hale) ## BENTON COUNTY ## Analysis of Water Sample was submitted by Harrison Hale, Jr., Nov. 11, 1925. Condition: Turbidity, Color and Odor, none. #### Determination | | Parts | |--------------------------------------------------------------------|---------| | | per | | | million | | Silica SiO2 | 20.90 | | Oxides of Iron and Alumi- | | | num Fe <sub>2</sub> 0 <sub>3</sub> -Al <sub>2</sub> 0 <sub>3</sub> | 2.30 | | Magnesium Mg | 1.74 | | Calcium Ca | 14.31 | | Sodium Na | 2.24 | | Chloride Cl | 3.44 | | Sulfate SO <sub>4</sub> | 7.16 | | Alkalinity | | | Methyl Orange | 23.71 | | Phenolphthalein | 0.00 | | Total Dissolved Solids | 77.50 | ## Hypothetical Combination | | Parts | Grains | |-------------------------------------------------------------------------------------------------------|---------|------------------------| | | per | per | | | million | gallon | | Silica SiO2 | 20.90 | 1.22 | | Oxides of Iron and Aluminum Fe <sub>2</sub> 0 <sub>3</sub> | | | | -Al <sub>2</sub> 0 <sub>3</sub> | 2.30 | 0.13 | | Magnesium Sulfate MgSO <sub>4</sub> | 8.62 | 0.50 | | Calcium Sulfate CaSO <sub>4</sub> | .40 | 0.02 | | Calcium Carbonate CaCO3 | 35.03 | 2.04 | | Sodium Chloride NaCl | 5.68 | 0.33 | | | 72.93 | 4.24 | | Total Hardness | 42.49 | 2 <b>.4</b> 8 | | Pounds of Scale per 1000 gallor<br>Founds of Hard Scale per 1000 g<br>Coefficient of Scale Hardness - | gallons | 0.565<br>0.283<br>0.50 | | | • | | This water is of low mineral content, forming little medium scale. ## No. 8 ## SPRINGTOWN SPRING Sec. 8, T. 18 N., R. 32 W., 100 yards from Highway 12. Very fine spring and gives name to town. Elev. 1259 feet. (Where to go in the Ozarks, p. 115) #### BELLA VISTA SPRING. This spring was shown on maps of 35 years ageo as "Cave Spring", but is 12 miles due north of what is now known as "Cave Springs" in the unincorporated town of Cave Springs, Benton County. Bella Vista Spring rises almost in the center of the SE quarter of 1-20N-31W about one-half mile east of Sugar Creek, 4 miles north and 1 mile west of Bentonville. It issues from a low cave in a limestone bluff about 15 feet above the floor of the small valley leading away from the bluff. I have been back in this cave as far as was possible which was less than one-quarter mile. It was necessary to go much of the way on hands and knees in running water and to climb over and down several rock falls. The last of these made access to the last room of the cave difficult and dangerous as the entrance was closed except for a very small opening in a mass of loose rocks. It appeared that some of the rock falls left a small amount of rock for a roof, and much water entered after heavy rains. No stalactites and stalagmites of large size were found and the roof, walls, and floor were of limestone except in a few places where the stream banks were of clay. This spring has supplied, through hydraulic mams which lift the water more than 200 feet to reservoirs, a summer population of 5000 people. The excess water has supplied a swimming pool 80 x 170 feet with a complete change of water each day. A strong air current of nearly constant temperature issues from the cave. This temperature April 27, 1938 was 63 F. when outside air in the shade was 72 F. The water is moderately hard and the temperature as it issued from the cave on the above date was 54°F. Air and water temperatures are nearly constant throughout the year. Dane M. Greer, Supervisor, Benton County, State Mineral Survey April 27, 1938 ## LITTLE CLIFTY CREEK SPRING Sec. 17, T. 19 N., R. 27 W., on east prong of Little Clifty Creek. This spring emerges from the base of the Boone Chert. Elev. 1000 feet (approximately). (A. G. S. Ann. Rept. 1891, vol. 1, p. 114) No. 10 ## DIAMOND SPRING Sec. 8, T. 19 N., R. 29 W., 1 mile east of Rogers. This spring is large and clear with sparkling water emerging from the Boone chert. Elev. 1390 (approximately) ## Analysis of Water ## Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Magnesia MgSO4 Total | Grains per U.S. gallon .52 .01 13.12 .02 .003 13.673 | Per cent of total solids 3.80 .07 95.96 .15 .02 100.00 | |----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------| | Found. | | | | Silica SiO2 | .52<br>.005<br>.006<br>5.25<br>.01<br>.002<br>7.88<br>.006<br>13.679 | 3.80<br>.04<br>.04<br>38.38<br>.07<br>.02<br>57.61<br>.04<br>100.00 | Water collected by assistant T. C. Hopkins. Analysis by A. E. Menke. Temperature of air, 29.3° F. (-1.5° C.) of water, 57.2° F. (14° C.) Total solids in solution, 11.66 grains per U. S. gallon. (A. G. S. Rept., 1891, vol. 1, p. 35) ## ESCULAPIA SPRINGS SE<sup>1</sup>/<sub>4</sub>, Sec. 16, T. 19 N., R. 29 W., 3 miles from Rogers. These spring are noted for their medicinal properties. There are two of the springs, (walled in with cut limestone). They occur in the Boone chert formation at the base of the Lower Carboniferous, in the bottom of a small ravine about 200 yards north of the road from Rogers to Van Winkle Mill, and three miles from Rogers. Elev. 1400 feet (approximately) # Analysis of Water Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------------| | Chloride of Soda-NaCl Chloride of Potash-KCl Cartonate of Soda-Na2CO3 Carbonate of Lime-CaCO3 Sulphate of Magnesia-MgSO4 Sulphate of Tron-FeSO4 Total | .84<br>.23<br>6.29<br>3.49<br>.08<br>1.42<br>12.35 | 6.80<br>1.86<br>50.93<br>28.26<br>.65<br>11.50 | | Found. | | | | Silica SiO <sub>2</sub> | .75<br>3.06<br>.11<br>.01<br>1.40 | 5.72<br>23.34<br>.84<br>.08<br>10.68<br>3.05 | | Sulphuric Acid SO <sub>4</sub> | 1.09<br>5.66<br>.63<br>13.11 | 8.32<br>43.17<br>4.80<br>100.00 | Water collected by assistant T. C. Hopkins. Analysis by A. E. Menke. Temperature of air, 27.04° F.; of water, 52.7° F. Total solid material in solution, 15.00 grains per U. S. gallon. (A. G. S. Rept., 1891, vol. 1, p. 44) ### SILVER SPRING Sec. 28, T. 19 N., R. 29 W. This spring is one of the largest and most beautiful springs in northern Arkansas. It emerges from the base of a bluff near the bottom of the Boone chert formation, in a crystal stream two or three feet deep and from six to ten feet across. The water is utilized to run a flour mill, distillery, and saw mill a short distance below the spring. Elev. 1102 feet. (A. G. S. Rept., 1891, vol. 1, p. 113) No. 13 ## FRISCO SPRING $SW_4^1$ , Sec. 33, T. 19 N., R. 29 W., near Silver Springs. This spring has a local reputation for great healing properties. It flows out of the chert formation of the Lower Carboniferous age at the head of a ravine 65 feet below the top of the hill and 340 feet above White River. Elev. 1102 feet. # Analysis of Water Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Chloride of Potash KCl Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Magnesia MgSO3 Total | Grains per U.S. gallon .41 .86 .14 8.77 .84 .42 11.44 | Per cent<br>of total<br>solids<br>3.49<br>7.52<br>1.22<br>76.66<br>7.34<br>3.67<br>100.00 | |---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------| | Found. | | | | Silica SiO2 | .41<br>.34<br>.07<br>3.51<br>.41<br>.34<br>5.70<br>.59 | 3.58<br>2.29<br>.61<br>30.65<br>3.58<br>2.97<br>49.78<br>5.15 | No. 13--Analysis continued Water collected by assistant T. C. Hopkins, March 18, 1892. Analysis by A. E. Menke. Temperature of air, 38.3° F.; of water, 53.6° F. Total solids in solution, 10.41 grains per U. S. gallon. (A. G. S. Rept., 1891, vol. 1, p. 47) No. 14 ## PRAIRIE CREEK SPRING Sec. 35, T. 19 N., R. 29 W., on the road from Rogers to Eureka Springs by way of Prairie Creek. This spring flows from Silurian rocks. Elev. 1102 feet. (A. G. S. Rept., 1891, vol. 1, p. 113) No. 15 ## SILVER SPRINGS Sec. 27, T. 19 N., R. 29 W., 5 miles southeast of Rogers, located in cool restful valley, surrounded by numerous springs and spring fed streams with an abundance of natural scenery. These springs were formerly known as Monte Ne. Elev. 1250 feet (approximately). (Where to go in the Ozarks p. 113) No. 16 ## BATH ROCK SPRING Sec. 7-12, T. 19 N., R. 29 and 30 W., Rogers, Rogers Springs. This spring is named from the natural cavity, shaped somewhat like a bath-tub, cut in the limestone. There are two springs which are slightly chalybeate, all the others being clear, odorless, and tasteless. The springs are all in the Boone chert formation and its accompanying limestones. Elev. 1383 feet. (A. G. S. Ann. Rept. 1891, vol. 1, p. 111) No. 17 ## MOSSY SPRING Sec. 7-12, T. 19 N., R. 29 and 30 W., Rogers, Regers Springs. This spring is noted for its medicinal purposes. Elev. 1383 feet. (A. G. S. Ann. Rept. 1891, vol. 1, p. 111) ## ROGERS SPRINGS Sec. 7-12, T. 19 N., R. 29 and 30 W., near Rogers. The ones most noted for their healing properties are those known as the Electric springs, a name given to three small springs, or one spring with three outlets. Elev. 1383 feet. (A. G. S. Ann. Rept. 1891, vol. 1, p. 111) No. 19 ## PUMP SPRING Sec. 13-7, T. 19 N., R. 29 and 30 W., near Rogers. The spring is owned and the water is marketed by the Southwestern Gas & Electric Company. It is 2 feet in depth, 5 feet in diameter of basin, and 293 gallons per minute discharge. It drains into the White River, is in the limestone formation, and contributes toward the municipal water supply. Furnished by J. C. Black. Elev. 1383. (Univ. of Ark. B. 2, Hale) ## Analysis of Water Sample of water submitted from Municipal Water Plant, April, 1924. (WS-5) Condition: Turbidity, Color and Odor, none. #### Determination | Parts | | |---------|--------------------------------------------------------------------------------------------| | per | | | million | ם | | 10.30 | - | | | | | 3.75 | | | 3.50 | | | 46.50 | | | 5.76 | | | 8.90 | | | 6.20 | | | | | | 129.00 | | | | | | 166.20 | cor. | | | per<br>million<br>10.30<br>3.75<br>3.50<br>46.50<br>5.76<br>8.90<br>6.20<br>129.00<br>0.00 | #### Hypothetical Combination | | | Parts | Grains | |---------------------|----------------------------|---------|----------------| | | | | $\mathtt{per}$ | | | | million | gallon | | Silica | SiO <sub>2</sub> | 10.30 | 0.60 | | Oxides | of Iron and Aluminum Fe203 | • | | | -Al <sub>2</sub> 03 | | 3.75 | 0.22 | ## No. 19--Analysis continued | Magnesium Sulphate MgSO4 Magnesium Carbonate MgCO3 Calcium Carbonate CoCO3 | Parts per million 8.80 6.65 116.25 | Grains per gallon 0.51 0.39 6.78 | |--------------------------------------------------------------------------------------------------|------------------------------------|----------------------------------| | Sodium Chloride NaCl Total Hardness | 14.66<br>160.41<br>130.65 | 0.86<br>9.36<br>7.62 | | Pounds of Scale per 1000 gallo<br>Pounds of Hard Scale per 1000<br>Coefficient of Scale Hardness | ns<br>gallons | 1.31<br>0.208<br>0.16 | This water is of medium mineral content, forming but little scale and that of very low coefficient of hardness. No. 20 ### DIAMOND SPRING Sec. 7-12, T. 19 N., R. 29 and 30 W., near Rogers. This spring contributes toward the municipal supply of water. Furnished by J. C. Black. Elev. 1383 feet. (Univ. of Ark. B 2, Halo) No. 21 ## ELECTRIC SPRING Sec. 10, 19 N., R. 30 W., $1\frac{1}{4}$ miles west of Rogers. "The water belongs to the calcic or lime class of waters with small quantities of the alkalies. There is no free gas in the water and the mineral matter is not sufficient to give a taste to it. In general character it is not unlike the Bethesda water of Waukesha, Wisconsh, and the Yellow Springs water of Ohio." The springs are a little over two hundred feet lower than the town of Rogers, and about a mile and a quarter distant from that town. Elev. 1300 feet. ## Analysis of Water | Constituents | Grains per U.S. gallon | |-------------------------|------------------------| | 011400 C10- | | | Silica SiO <sub>2</sub> | •552 | | Iron and Alumina Fe, Al | .025 | | Chloride of Soda NaCl | .174 | #### BENTON COUNTY ## No. 21--Analysis continued | | Grains per | |------------------------------------------------------------------------|--------------| | | U.S. | | | gallon | | Chloride of Potash KCl | •008 | | Sulphate of Potash K2SO4 | .397 | | Sulphate of Lime Caso, | •328 | | Bi-carbonate of Lime CaCO3, CO2 | 20.488 | | Bi-carbonate of Lime CaCO3, CO2<br>Bi-carbonate of Magnesia MgCO3, CO2 | <b>.48</b> 8 | | Total | 22.460 | Temperature of the air, 90° F.; of the water, 55° F. Analysis made in 1881 by Potter and Riggs of St. Louis, Mo.; copy kindly furnished by Prof. W. B. Potter. (A. G. S. Ann. Rept. 1891, vol. 1, p. 41) No. 22 ## LONO SPRING Sec. 31, T. 19 N., R. 30 W., Frisco at Lowell. The spring is owned by E. E. Young, Tulsa Oklahoma. A dam has been built at this spring and a small lake formed which is fed by the water from this spring. Elev. 1343 feet (approximately). (Postmaster at Lowell) No. 23. ### DECATUR SPRING Sec. 11, T. 19 N., R. 33 W., at Decatur. The spring is owned and the water marketed by the Decatur Water Company, Decatur, Arkansas. The spring furnishes the municipal water supply for Decatur. The water plant began service in 1912. Water is drawn from a spring, and emergency supply is insured by a concrete reservoir. Total pumpage for the year 1924 was 495,000 gallons. Average daily pumpage, using the pumps about three hours per day, is 5,000 gallons. Daily pumpage during peak consumption was 6,000 gallons. The water is accorded no chemical treatment. Elev. 1232 feet. ## Analysis of Water Sample of water secured by Prof. N. T. Bourke, Engineering Experiment Station, from tap in yard of Mayor W. H. Bach, July, 1925. Condition: Turbidity, Color and Odor, none. ## No. 23--Analysis continued. ## Determination | | Parts | |--------------------------------------------------------------------|---------| | | per | | | million | | Silica SiO2 | 6.70 | | Oxides of Iron and Alumi- | | | num Fe <sub>2</sub> 0 <sub>3</sub> -Al <sub>2</sub> 0 <sub>3</sub> | 1.10 | | Magnesium Mg | 1.98 | | Calcium Ca | 26.83 | | Sodium Na | 5.36 | | Chlorine Cl | 8.25 | | Sulfate SO <sub>4</sub> | 6.32 | | Alkalinity | | | Methyl Orange | 53.02 | | Phenolphthalein | 0.00 | | Total Dissolved Solids | 90.50 | ## Hypothetical Combination | | Parts<br>per<br>million | Grains<br>per<br>gallon | |---------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------| | Silica SiO2 | 6.70 | 0.39 | | Oxides of Iron and Aluminum Fe <sub>2</sub> O <sub>3</sub> | 1.10<br>7.42<br>3.08<br>67.07<br>13.61<br>98.98 | 0.06<br>0.43<br>0.18<br>3.90<br>0.79<br>5.75 | | Total Hardness | 75.29 | 4.39 | | Pounds of Scale per 1000 gallons - Founds of Hard Scale per 1000 gallones | lons | 0.752<br>0.233<br>0.31 | This water is low in mineral matter, forming very little medium scale. (Univ. of Ark. B 2, Hale) $\mbox{$\omega_{L}$}$ ## FRISCO SPRING Sec. 33, T. 19 N., R. 29 W., at Monte Ne. This spring is near White River. The discharge is 450,000 yearly. Elev. 1,100 feet. (Playgrounds in Ark.) No. 25 ### CAVE SPRING Sec. 1, T. 20 N., R. 70 W., near Cave Springs. The spring is owned by the Federal Reserve Bank, St. Louis, Mo. This spring which gets its name from a cave is a subteranian creek. It emerges from the mountain side about 45 feet from the base. It flows down over a terrace of rocks for about 20 feet. The Geodetic Survey found that it flowed 30 gallons per minute. Chemical analysis shows the water to be absolutely pure. The discharge is 1,073 gallons per minute. Elev. 1250 feet (approximately). (B. F. Alley, Houston, Texas) No. 26 ## JEFFERSON SPRING SW±, Sec. 28, T. 20 N., R. 30 W., near Bentonville. The spring is owned by S. A. Jefferson. This spring has a large flow and is cold water from the limestone flint. In 1903 it was used as part of the municipal water supply. The water is hard. Elev. 1250 feet (approximately). (U. S. G. S. W 102) No. 27 #### PARK SPRINGS NE<sub>4</sub>, Sec. 30, T. 20 N., R. 30 W., on Frisco Railway and U. S. Highway 71. Also State Highways 12, 72, and 100. Located at the City of Bentonville in a 45-acre park, which contains medicinal radio-active springs. Elev. 1297 feet. (Where to go in the Ozarks, p. 96) No. 28 ## BENTONVILLE SPRINGS $S_{2}^{1}$ , Sec. 30-31, T. 20 N., R. 30 W., at Bentonville. The spring is owned by the Municipal Water Works, Bentonville. Chlorination is used but no other treatment is given. The plant in 1894 drew water from 3 springs. Elev. 1927 feet. ### Analysis of Water Sample furnished by the Municipal Water Plant, May, 1924. Condition: Turbidity, Color and Odor, none. ## No. 28--Analysis continued #### Determination | | Parts | |---------------------------|----------------| | | $\mathtt{per}$ | | | million | | Silica SiO <sub>2</sub> | 12.00 | | Oxides of Iron and Alumi- | | | num Fe203-A1203 | 2.30 | | Magnesium Mg | .73 | | Calcium Ca | 46.75 | | Sodium Na | 2.92 | | Chlorine Cl | 4.50 | | Sulfate SO <sub>4</sub> | 1.89 | | Alkalinity | | | Methyl Orange | 117.60 | | Phenolphthalein | 148.60 | | Total Dissolved Solids | 148.60 | | | | ## Hypothetical Combination | | Parts | Grains | |-------------------------------------------------------------------------------------------------------|-------------------------------|----------------------| | | $\operatorname{\mathtt{per}}$ | $\mathtt{per}$ | | | million | gallon | | Silica SiO <sub>2</sub> | 12.00 | 0.70 | | Oxides of Iron and Aluminum Fe203 | | | | -Al <sub>2</sub> 0 <sub>3</sub> | 2.30 | 0.13 | | Magnesium Sulfate MgSO4 | 2.38 | 0.14 | | Magnesium Carbonate MgCO3 | 1.02 | 0.06 | | Calcium Carbonate CaCO3 | 116.88 | 6.82 | | Sodium Chloride NaCl | 7.42 | 0.43 | | | 141.87 | 8.28 | | Total Hardness | 119.88 | 6.99 | | Pounds of Scale per 1000 gallons<br>Pounds of Hard Scale per 1000 ga<br>Coefficient of Scale Hardness | | 1.182<br>.136<br>.12 | | | | | This water is satisfactory for domestic purposes, forming but very little scale. (Univ. of Ark. B 2, p. 14) $\nu$ No. 29 ## GARFIELD SPRING $SE_4^1$ , Sec. 32, T. 21 N., R. 28 W., at Garfield. This spring emerges from base limestone bluff and flows through a 3-inch pipe into the railroad water tank. It is hard water and belongs to the Frisco Railroad. Elev. 1520 feet. (U. S. G. S. W 102) ## BAYAN SPRING SW1, Sec. 29, T. 21 N., R. 28 W., at Garfield. The spring is owned by B. F. Bayan. This spring emerges from base limestone bluff and is used for domestic purposes. The water is of medium hardness. The discharge is 15 gallons per minute and has a temperature of 65°. Elev. 1520 feet. (U. S. G. S. W 102) No. 31 ### SPANISH TREASURE SPRING Sec. 35, T. 21 N., R. 33 W., 2 miles outh of Sulphur Springs. This spring is owned by the Knight Estate of Kansas City and is of interest because of its history and traditions. Elev. 1000 feet (approximately). (Walter R. Eaton, Sulphur Springs, Arkansas) No. 32 ### SULPHUR SPRING Sec. 23, T. 21 N., R. 33 W., at Sulphur Spring. This spring is located in a beautiful park of century old elms. The water is of medium hardness. It is used for medicinal purposes and the water temperature is 61.7°. Elev. 920 feet (approximately) ## Analysis of Water ## Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon .72 9.34 4.48 6.51 .12 1.33 .21 22.71 | Per cent<br>of total<br>solids<br>3.17<br>41.13<br>19.73<br>28.66<br>.53<br>5.86<br>.92<br>100.00 | |---------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | Silica SiO2 | .72<br>4.10<br>1.28<br>3.64<br>.06<br>.22<br>.90<br>6.13<br>5.66<br>22.71 | 3.17<br>18.05<br>5.64<br>16.03<br>.27<br>.97<br>3.96<br>26.99<br>24.92 | ## No. 32--Analysis continued Collected by A. E. Menke, November 16, 1891. Analysis by A. E. Menke. Temperature of air, 28.4° F.; temperature of water, 61.7° F. Sulphuretted hydrogen gas in solution, 0.0002 grains per U. S. gallon. Total solids in solution, 22.59 grains per U. S. gallon. (A. G. S. Ann. Rept., vol. 1, p. 96) No. 33 ## BOX SPRING $NW_{4}^{\frac{1}{4}}$ SE $_{4}^{\frac{1}{4}}$ , Sec. 33, T. 17 N., R. 33 W., near Siloam Springs on Kansas City Southern Railway. Elev. 1105 feet. (U. S. G. S. Top. Quad. in Arkansas) No. 34 ## CHAMBERS SPRING $SE_{4}^{\frac{1}{4}}$ $SE_{4}^{\frac{1}{4}}$ , Sec. 30, T. 17 N., R. 32 W., near Springtown. Elev. 1259 feet. (U. S. G. S. Top. Quad. in Arkansas) #### BOONE COUNTY No. 35 ## VALLEY SPRINGS Sec. 3, T. 17 N., R. 19 W., at Valley Springs sometimes called Double Springs. There are two large springs of clear cold water which flow from the chert bed, possibly near the bottom of it, near the base of the Lower Carboniferous beds. In dry weather they are the head of running water on Elm Branch, a tributary of Hog Creek. The analysis given below is of water taken from the eastern one of the two springs, the one to the rear of the post-office. Elev. 1075 feet (approximately). #### Analysis of Water #### Hypothetical Combination | Constituents | U.S. | Per cent of total | |-------------------------|--------|-------------------| | | gallon | solids | | Silica SiO2 | 1.25 | 7.90 | | Chloride of Soda NaCl | .27 | 1.71 | | Carbonate of Lime CaCO3 | 13.89 | 87.75 | ## No. 35--Analysis continued | | Grains per | Ter cent | |--------------------------------|------------|----------| | | U.S. | of total | | | gallon | solids | | Carbonate of Iron FeCO3 | .14 | .88 | | Sulphate of Magnesia MgSO4 | .28 | 1.76 | | Total | 15.83 | 100.00 | | | | | | Found. | | | | 247400 240 | 1.25 | 7.94 | | Silica SiO <sub>2</sub> | .10 | .63 | | Sodium Na | • | - | | Magnesium Mg | .06 | .38 | | Calcium Ca | 5.55 | 35.24 | | Iron Fe | .07 | .44 | | Sulphuric Acid SO <sub>4</sub> | .23 | 1.46 | | Carbonic Acid CO3 | 8.33 | 52.89 | | Carbonic Acid CO3 | .16 | 1.02 | | Total | 15.75 | 100.00 | Water collected by assistant T. C. Hopkins, February 10, 1892. Analysis by A. E. Menke. Temperature of air, 53.15° F.; of water, 58.1° F. Total solids in solution, 16.75 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 99) No. 36 ### SULPHUR SPRING Sec. 24, T. 17 N., R. 20 W., on the north side of Sulphur Mountain, two miles and a half from Watkins' post-office, and nearly nine miles from Harrison, the county seat. "The spring is at the head of one of the tributaries of Crooked Creek. The water is slightly clouded, and gives a very perceptiable odor and taste of sulphuretted hydrogen gas. "The shale in which the spring occurs is an aluminous, pyritiferous shale containing ferruginous, calcareous nodules. The overlying rocks are shales, shaly sandstones and impure limestone. The sulphuretted hydrogen gas (not shown in the analysis) and the sulphuric acid are probably due to the decomposition of the iron pyrites in the shale. "The spring is in Lower Carboniferous rocks and emerges near the top of the Marshall shale which at this point is 250 feet thick. It is 300 feet above Watkins' post-office and 500 feet above Harrison, both of which are on the Boone chert; it is probably not far from 500 feet above the base of the Lower Carboniferous series and about the same distance below the base of the Millstone Grit, which occurs on both ends of Sulphur Mountain." Elev. 2000 feet (approximately). ## Analysis of Water ## Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon .35 .02 .01 6.23 7.72 1.42 4.80 .82 21.02 | Per cent<br>of total<br>solids<br>1.63<br>.10<br>.05<br>29.65<br>36.73<br>6.72<br>22.83<br>3.90<br>100.00 | |---------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------| | Found. | | | | Silica SiO2 | .35<br>2.71<br>.96<br>.01<br>3.09<br>.69<br>.82<br>3.84<br>8.90<br>.02<br>21.39 | 1.63<br>12.70<br>4.47<br>.04<br>14.44<br>3.22<br>3.83<br>17.95<br>41.61<br>.09 | Water collected by assistant T. C. Hopkins, Feb. 9, 1892. Analyzed by A. E. Menke. Temperature of air, 36.86° F.; of water, 50° F. Total solids in solution, 22.91 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 94-95) No. 37 #### FODDER STACK SPRING Sec. 26, T. 17 N., R. 20 W., on Fodder Stack Mountain two miles west of Sulphur Springs. This spring has a stronger sulphur odor and taste than the one on Sulphur Mountain. Both are in the same geologic level—the Marshall shale, of Lower Carboniferous age. Elev. 1250 feet (approximately). (A. G. S. Ann. Rept. 1891, vol. 1, p. 95) ## BEAUTY SPRING T. 17 N., R. 21 W., 11 miles southwest of Harrison. The spring is owned by Marvin Wagley, Harrison. Elev. 1500 feet (approximately). (C. R. Christian, Hill Top, Arkansas) No. 3 ## MITCHELL SPRINGS T. 18 N., R. 20 W., at Harrison. The spring is owned by the City of Harrison. The water is the municipal supply for Harrison. The average daily pumpage during 1923 was 105, 035 gallons using the pumps from 4 to 10 hours per day. The water is not chemically treated or otherwise treated by sedimentation processes. Elev. 1061 feet. ## Analysis of Water Sample furnished by Municipal Water Plant, June, 1924. Condition: Turbidity, Color and Odor, none. #### Determination | | Parts | |--------------------------------------------------------------------------------|----------------| | | $\mathtt{per}$ | | | million | | Silica SiO <sub>2</sub> | 21.40 | | Oxides of Iron and Aluminum | | | | 1.35 | | Fe <sub>2</sub> 0 <sub>3</sub> -Al <sub>2</sub> 0 <sub>3</sub><br>Magnesium Mg | Slight | | Calcium Ca | 83.72 | | Sodium Na | 1.29 | | Chlorine Cl | 1.99 | | Sulfate SO <sub>4</sub> | 1.81 | | Alkalinity | | | Methyl Orange | 209.72 | | Phenolphthalein | 0.00 | | Total Dissolved Solids | 243.80 | ### Hypotheticl Combination | Silica SiO <sub>2</sub> | Parts<br>per<br><u>million</u><br>21.40 | Grains per gallon 1.25 | |---------------------------------|------------------------------------------|----------------------------------------| | -Al <sub>2</sub> O <sub>3</sub> | 1.35<br>2.27<br>209.30<br>3.28<br>237.60 | 0.09<br>0.13<br>12.21<br>0.19<br>13.87 | No. 39--Analysis continued | Total | Hardness | Parts<br>per<br>million<br>211.19 | Grains<br>per<br>gallon<br>12.32 | |-------|-------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------| | | Founds of Scale per 1000 gallon<br>Founds of Hard Scale per 1000 g<br>Coefficient of Scale Hardness - | allons - | 2.251<br>0.200<br>0.09 | Water is of medium mineral content, forming much scale but of very low coefficient of hardness. (Univ. of Ark. B 2, p. 44, Harrison Hale). No. 40 ## TWIN SIRINGS $\mathbb{S}N_4^{\perp}$ $\mathbb{S}N_2^{\perp}$ , Sec. 14, T. 19 N., R. 21 W., near Francis, locally known as Bear Creek Springs. One has a very dependable flow and is the main feeder for beautiful Bear Creek, which flows east and north and empties into White River at the northern edge of Boone County on the Missouri line. Elev. 1105 feet. (Sam A. Leath, Harrison, Arkansas) No. 41 ### MARBLE FALLS SPRING Sec. 27, T. 20 N., R. 19 W., on A. L. Dirst's place at the head of a tributary of West Music Creek. The marble outcrops in a bold bluff, from beneath which the spring issues; in this bluff are several varieties of marble, the most characteristic ones being red, pink, and pink and light gray mottled. Elev. 900 feet (approximately). (A. G. S. 1890, vol. 4, p. 324) No. 42 ## ELIXIR STRING Sec. 35, T. 20 N., R. 19 W., near the head of one of the terminal ravines of upper Sugar Loaf Creek. There are two principal springs, one on each side of the ravine, and several minor ones in the immediate vicinity. They emerge near the top of the Silurian rocks from saccharoidal sandstone and siliceous limestone. The one on the west side of the ravine is the stronger spring and is the one from which the water was taken for analysis. The result of the analysis shows the water to contain less solid matter in solution than that of any of the springs of the north part of the state that have been analyzed. This is no doubt due in great measure to the fact that the water was taken for analysis shortly after heavy rains when the springs were swollen to twice their normal size. Elev. 1000 feet. ## Analysis of Water ## Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |---------------------------------------------------|------------------------|--------------------------| | Silica SiO <sub>2</sub> Chloride of Soda NaCl | 1.41<br>.26 | 33.53<br>6.18 | | Chloride of Potash KCl | .01 | .24 | | Carbonate of Soda Na <sub>2</sub> CO <sub>3</sub> | •60 | 14.27 | | Carbonate of Lime CaCO3 | 1.92 | 45.66 | | Carbonate of Iron FeCO3 | .001 | .02 | | Sulphate of Magnesia MgSO4 - | .004 | .10 | | Total | 4.205 | 100.00 | | Found. | | | | Silica SiO2' | 1.41 | 32.46 | | Sodium Na | .36 | 8.29 | | Potassium K | .05 | 1.15 | | Magnesium Mg | .0008 | .02 | | Calcium Ca | .77 | 17.72 | | Iron Fe | .0005 | .01 | | Sulphuric Acid SO <sub>4</sub> | .0032<br>1.59 | .07<br>36.60 | | Carbonic Acid CO3 Chlorine Cl | .16 | 3.68 | | Total | $\frac{10}{4.3445}$ | 100.00 | Water collected by assistant T. C. Hopkins, February 7, 1892. Analysis by A. E. Menke. Temperature of air, 41.9° F.; of water, 55.4° F. Total solids in solution, 4.25 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 42) #### BRADLEY COUNTY No. 43 ## LEAG'S MINERAL SPRINGS Sec. 32, T. 12 S., R. 10 W., 6 miles west of Warren. Elev. 200 feet (approximately). (U. S. G. S. F 46) · OM ### SULPHUR SPRINGS SE2, Sec. 34, T. 14 S., R. 9 W., near Sumpter. Elev. 140 feet. This information applies to both Nos. 44 and 45: Owen reports this as a strong alkaline sulphuret water, alkaline to test paper, and containing the following principal constituents: Carbonate of alkalies, probably both soda and potash; sulphuret of alkalies; sulphate of magnesia (Epsom salts), and chloride of sodium (common salt). Owen states that of several springs examined, the strongest gave: Sulphate of magnesia (Epsom salts), sulphate of soda (Glauber's salt), Chloride of sodium (common salt, carbonate of liem, carbonate of magnesia, carbonate of soda (a trace), and carbonate of potash. (U. S. G. S. P 46, p. 236) No. ## BLUE SPRINGS Sec. 3, T. 12 S., R. 12 W., near New Edinburg. The bottom of the springs of this group is covered with blue moss, hence the name. The community around these springs was one of the earliest settlements in this vicinity. The Indians used the springs prior to the white settlement. The original community comprised a small part of three counties, Bradley, Calhoun, and Cleveland. Elev. 300 feet (approximately). (Mrs. Barbara Denton, Warren Eagle--11-26) #### CALHOUN COUNTY No. #### HOLDERNESS SPRING Sec. 4, T. 11 S., R. 14 W., 3 miles north of Little Bay. This spring is a double mineral spring and is owned by J. I. Holderness. Elev. 100 feet. (approximately). (U. S. G. S. P 46) No. ## HOPEVILLE SPRING Sec. 6, T. 11 S., R. 14 W., 1 mile west of Hopeville. The water from this spring was used commercially prior to the war between the states. Elev. 225 feet (approximately). (U. S. G. S. P 46) ## THOMAS'S MINERAL SPRING Located on Beaver pond branch of Freeo. The spring is owned by Dr. W. A. Thomas and the water is used for medicinal purposes. Elev. 200 feet (approximately). Qualitative Chemical Analysis Bicarbonate of the protoxide of iron, Chloride of sodium, A trace of magnesia. It is slightly alkaline to litmus paper. It is a saline chalybeate. (Arkansas Geological Survey Second Report of a Geological Reconnaissance-1860. p. 138) #### CARROLL COUNTY No. ## POISON SPRING NW, Sec. 29, T. 18 N., R. 24 W., on the Dry Fork of King's River. The water from this spring is said to cause sickness to persons or anamials using the water. Elev. 1500 feet (approximately). (A. G. S. Ann. Rept., 1891, Vol. 1, p. 111) No. ### BUNCH SPRING Sec. 4, T. 20 N., R. 24 W., Berryville. The spring is owned by C. F. Bunch. The spring has a large flow of water, is cold, and is used for domestic purposes. Elev. 1246 feet. (U. S. G. S. W 102) No. #### DAVIS SPRING Sec. 10, T. 20 N., R. 24 W., Berryville. The spring is owned by W. W. Davis. It is a strong stream, cold and is used for domestic purposes. Elev. 1246. (U. S. G. S. W 102) ## BERRYVILLE SPRING Sec. 30, T. 20 N., R. 23 W., at Berryville. There is a sanitarium also hotels, etc., located at this spring. The water is soft. The spring is owned by the Berryville Milling Company. Elev. 1246 feet. Analysis of Water | | Parts | _ | | |------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------| | Constituents | $\mathtt{per}$ | Combining | 3 | | | million | Values | | | Calcium Ga | 11.25 | 0.561 | | | Manganese Mn | trace | | | | Iron Fe | .20 | •007 | | | Aluminum Al | .26 | .029 | | | Ammonium NH <sub>4</sub> | .02 | .001 | | | Magnesium Mg | •20 | .016 | | | Sodium Na | 5.00 | .217 | | | Potassium K | 1.49 | .038 | | | Lithium Li | trace | | | | Silica SiO <sub>2</sub> | 9.20 | | 0.869 | | <b>.</b> | | | • | | Bicarbonate ion HCO3 | 35.63 | 0.584 | | | Carbonate ion CO3 | 0.00 | | | | Sulphate ion SO4 | 3.60 | .075 | | | Chloride ion Cl | 5.00 | .141 | | | Bromide ion Br | trace | | | | Idoide ion I | trace | | | | Nitrate ion NO3 | 4.00 | .064 | | | Witrato ion NO2 | trace | | | | Phosphate ion PO4 | trace | | 0.864 | | | And the state of t | nge alife alle Marie e spelle e spelle e spelle e de l'artifacture que e propère a migli e paragle e a | -7 <del>(</del> | | *Sum of Constituents | 57.58 | | 1.733 | | Total Residue on Evaporation | 58 <b>.00</b> | | | | | publication to the Anna Administration of the Anna Anna Anna Anna Anna Anna Anna Ann | | | | Error | 0.42 | | 0.005 | | Percentage of Error | 0.72 | | 0.29% | | _ | | | - | \*Note--The sum of constituents is calculated on the dry basis with bicarbonates converted into carbonates. Harrison Hale--Consulting Chemist. (Information furnished by E. F. Hassensall) #### EUREKA SPRINGS Sec. 16. T. 20 N., R. 26 W., at Eureka Springs. The City of Eureka Springs has more than fifty springs within the city limits and more than 1000 within a radius of seven miles. The United States Government which originally owned the springs, has by a decree placed them in trust with the city for the perpetual free use of the public. These springs supply an abundance of pure and health-giving waters not only for the visitors who go there in the winter from the North, and in the summer from the South, but for shipment to those who cannot make a visit to this delightful resort. The rugged landscape gives the place an Alpine effect, noticeable especially in the meanderings of streets through the valley and up the mountain side, where the terraces are lined with attractive hotels, beautiful homes and here and there a park or pavilion with resting places for the tourists. Elev. 1461 feet. Note on springs in the Eureka Springs area. Condensed from SPRINGS, by T. C. Hopkins, The American Geologist, Vol. XIV, No. 6, December 1894, p. 365. There is probably nowhere in the United States a better opportunity for observing the influence of stratigraphy on the emergence of springs than in the Paleozoic area of northern Arkansas and southwestern Missouri, an area known as the Ozark uplift. Eureka Springs and vicinity represent a typical area in the western half of the district. Of the thirty-eight springs on this area of five square miles, twenty-six emerge at the base of the chert bed, and only twelve find their way through the shale and sandstone into the underlying magnesian limestones. Even this proportion is much greater in many other parts of the area, owing to the thinness of the sandstone bed in this region. It is noteworthy that this horizon of springs should represent the interval between the Silurian and Carboniferous rocks over a large part of the area. Those of Silurian age occur only in the eastern part of the area. The fact that this interval is a marked horizon of springs, is probably a coincidence rather than a result of the long time interval, as apparently the only effect it might account for would be the induration of the sandstone. There is no unconformity, either of dip or erosion. #### CARROLL COUNTY Water from springs supplies the municipal reservoir. More than 300,000 gallongs daily are used by the city. An analysis of the city water follows. #### Analysis of Water Sample submitted from filling station at foot of water tower, 7-17-25. Condition: Turbidity, Color and Odor, none. (Univ. of Ark. B 2, Hale. This water is of low mineral content, forming very little scale of medium hardness. #### Determination | | Parts | |-----------------------------|----------------| | | $\mathtt{per}$ | | | million | | Silica SiO2 | 11.80 | | Oxides of Iron and Aluminum | | | Fe203-Al203 | 1.15 | | Nagnesium Mg | 2.49 | | Calcium Ca | 31.29 | | Sodium Na | 3.31 | | Chloride Cl | 5.10 | | Sulfate SO4 | 15.00 | | Alkalinity | | | Methyl Orange | 70.15 | | Phenolphthalein | 0.00 | | Total Dissolved Solids | 111.00 | #### Hypothetical Combination | | Parts<br>per<br>million | Grains<br>per<br>gallon | |-----------------------------------------------------------------------------------------------------|-------------------------|-------------------------| | Silica SiO2 | 11.80 | 0.69 | | Oxides of Iron and Aluminum Fe <sub>2</sub> O <sub>3</sub> | 7 75 | 0 08 | | Magnesium Sulfate MgSO <sub>4</sub> | 1.15<br>12.35 | 0.07<br>0.72 | | Calcium Sulfate CaSO, | 7.28 | 0.42 | | Calcium Carbonate CaCoz | 72.86 | 4.25 | | Sodium Chloride NaCl | 8.41 | 0.49 | | | 113.85 | 6.64 | | Total Hardness | 88 <b>.4</b> 8 | 5.16 | | Founds of Scale per 1000 gallor<br>Founds of Hard Scale per 1000 g<br>Coefficient of Scale Hardness | ns<br>gallons | 0.912<br>0.310<br>0.34 | #### No. 53--Continued Some of these springs located within the city limits are: Basin Spring which was the first to be developed, Carrie A. Nation's Spring, Sweet Spring, Onyx Spring, Harding Spring, Grotto Spring, Magnetic Spring, and Crescent Spring. The following is the analysis of two of the springs. The analysis of the water of the other springs is about the same, excepting the variation in the water of the Magnetic. #### Analysis of Water #### BASIN SFRING | | Parts | Grains per | |----------------------------------|---------|------------| | | per | U.S. | | | million | gallon | | Ammonium Chloride (NH CL) | 0.4 | 0.14 | | Potasium Chloride (KCL) | 1.9 | 0.13 | | Sodium Chloride (NaCL) | 1.3 | 0.19 | | Sodium Sulphate (Na2SO4) | 3.4 | 0.09 | | Sodium Bicarbonate (Na(HCO3)4 | 3.3 | 0.15 | | Magnesium Bicarbonate (Mg(HCO3)2 | 8.1 | 0.47 | | Calcium Bicarbonate (Ca(HCO3)2 | 75.8 | 4.43 | | Iron Oxide and Aluminum Fe 203 | | | | (A120 <sub>3</sub> ) | 1.4 | 0.08 | | Silica (SiO <sub>2</sub> ) | 5.3 | 0.31 | | Total solids | 100.9 | 5.85 | Radio-activity 65.8 Beta emanations predominating Uranium Grams x 10-4 as the standard Co3 calculated to satisfy basis Gaseous contents 28.52 to the gallon. #### MAGNETIC SPRINGS | | Parts<br>per<br><u>million</u> | Grains per U.S. gallon | |------------------------------|--------------------------------|------------------------| | Silica SiO2 | 9.90 | 0.578 | | Oxide of Al. Fe, Al203-Fe203 | 1.20 | 0.070 | | Sodium Chloride NaCl | 13.85 | 0.808 | | Magnesium Sulphate MgSO4 | 5.46 | 0.318 | | Magnesium Carbonate MgCo3 | 42.78 | 2.495 | | Calcium Carbonate Ca Co3 | 128.05 | 7.471 | | Total dissolved solids | 201.24 | 11.740 | | Gas in solution with water | 110.85 | 6.466 | | | 312.09 | 12.206 | #### OZARKA SPRING Sec. 6, T. 20 N., R. 26 W., 2 miles northeast of Eureka Springs. Elev. 1461 feet (approximately). ## Analysis of Water No. 1 | | Parts | |--------------------------------------------------------------------------------------------|---------| | | per | | | million | | Sodium Chloride NaCl | None | | Magnesium Chloride MgCl2 | 6,00 | | Calcium Chloride CaCl2 | None | | Magnesium Sulphate MgSO <sub>4</sub> | 9.50 | | Magnesium Sulphate Mg\$04 Magnesium Eicarbonate (MgHCO3)2) Calcium Eicarbonate (Ca(HCO3)2) | 18.60 | | Calcium Bicarbonate (Ca(HCO <sub>3</sub> ) <sub>2</sub> ) | 116.20 | | Aluminum Oxide Al <sub>2</sub> O <sub>3</sub> | 0.70 | | Silica SiO2 | 7.20 | | Total Solids | 158.20 | ## Analysis of Water No. 2 | | ${ t Parts}$ | Grains per | |-----------------------------|----------------|------------| | | $\mathtt{per}$ | U.S. | | • | <u>million</u> | gallon | | Silica (SiO <sub>2</sub> ) | 5.3 | 0.31 | | Iron (Fe++) | 0.1 | 0.008 | | Alumina $(\Lambda 1_2 0_3)$ | 1.8 | 0.10 | | Calcium (Ca++) | 28.7 | 1.67 | | Magnesium (Mg++) | 6.5 | 0.38 | | Sodium (Na+) | 0.2 | 0.01 | | Bicarbonates (HCO3-) | 103.0 | 6.02 | | Carbonates (CO3-) | 0.0 | 0.00 | | Chlorides Cl-) | 4.5 | 0.26 | | Sulphates (SO4-) | 7.6 | 0.44 | | Nitrate (NO3-) | 0.5 | 0.02 | "This is very pure water. The amount of solids in solution is remarkably low. Wherever a pure natural water containing a minimum amount of mineral substances in solution is indicated this water serves the purpose admirably. As a table water for general use it is of excellent quality." Ozarka water is marketed commercially by the Eureka Springs Water Company and as Roc-Arc Water by the Roc-Arc Company of Little Rock. # Analysis of SPRING WATER FROM BERRYVILLE, ARKANSAS ## Laboratory number 3372 August 9, 1937 | Constituents | | Parts per Million | Combining V | /alues | |--------------------|------------------|-------------------|-------------|--------| | Calcium | Ca | 11.25 | 0.561 | | | Manganese | Mn | trace | | | | Iron | Fe | .20 | .007 | | | Aluminum | Al | <u>.</u> 26 | .029 | | | Ammonium | NH4 | .02 | .001 | | | Magnesium | Mg | •20 | .016 | | | Sodium | Na | 5.00 | .217 | | | Potas <b>s</b> ium | K | 1.49 | .038 | | | Lithium | Li | trace | | | | Silica | SiO <sub>2</sub> | 9.20 | | 0.869 | | Bicarbonate ion | HC03 | .35.63 | 0.584 | | | Carbonate ion | 003 | 0.00 | | | | Sulphate ion | S04 | 3.60 | .075 | | | Chloride ion | Cl | 5.00 | .141 | | | Bromide ion | $\mathtt{Br}$ | trace | | | | Idoide ion | I | trace | | | | Nitrate ion | NO3 | 4.00 | .064 | | | Nitrite ion | NOS | tra <b>ce</b> | | | | Phosphate ion | PO4 | trace | | 0.864 | | *Sum of Constituer | nts | 57.58 | | 1.733 | | Total Residue on B | Evaporation | 58.00 | | | | Error | | 0.42 | | 0.005 | | Percentage of Er | ror | 0.72% | | 0.29% | \*Note--The sum of constituents is calculated on the dry basis with bicarbonates converted into carbonates. Harrison Hale Consulting Chemist #### ANALYSIS OF BERRYVILLE, ARKANSAS, SPRING WATER #### JULY 28, 1931 G. H. Woodroffe, Metallurgical Engineer, New York C. T. Ressler, Dir. of Bur. of Tests and Inspection. Upon analysis of the Johnson Spring water obtained by our Mr. Blalock from Mr. Basore, Water Commissioner of Berryville, Arkansas, we obtained the following results: | Reaction slightly alkaline | | |----------------------------|--------------------| | Permanent Hardness | none | | Temporary Hardness | 30.3 parts/million | | Total Hardness | 30.3 | | Carbon Dioxide | none | | Organic Matter | none | | Suspended Matter | none | | Non-incrusting Solids | trace | | Incrusting Solids | 2.44 grains/gallon | #### Composition of None-incrusting Solids | Sulphur Trioxide | trace | |--------------------------|-------| | Calcium Oxide | trace | | Chlorine | trace | | Sodium & Potassium Oxide | none | ## Composition of Incrusting Solids | Sulphur Trioxide | None | |-------------------------|--------------------| | Silica | 0.57 grains/gallon | | Iron and Aluminum Oxide | 0.1 | | Calcium Oxide | 0.57 | | Magnesium Oxide | 0.19 | #### Composition of Non-incrusting Salts | Magnesium Sulphate | trace | |--------------------|-------| | Calcium Chloride | trace | ## Composition of Incrusting Salts | Silica | 0.57 grains/gallon | |------------------------|--------------------| | Iron and Aluminu Oxide | 0.1 | | Calcium Carbonate | 1.37 | | Magnesium Carbonate | 0.40 | | | | of Little Red River. There are a number of them and they furnish the municipal supply for the city. This spring is about 48 inches in depth. Elev. 348 feet. Analysis of Water Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon 1.43 1.88 2.21 1.30 5.53 .70 .14 .03 13.22 | Per cent<br>of total<br>solids<br>10.82<br>14.22<br>16.72<br>9.83<br>41.83<br>5.29<br>1.06<br>.23<br>100.00 | |---------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------| | Found. Silica SiO2 | 1.43<br>1.20<br>.37<br>3.10<br>.04<br>.57<br>4.81<br>.02<br>1.14<br>12.68 | 11.27<br>9.47<br>2.91<br>24.45<br>.32<br>4.49<br>37.94<br>.16<br>8.99 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; temperature of water, 59° F. Total solids in solution, 15.18 grains per U. S. gallon. Free ammonia, 0.086 parts per million. Albuminoid ammonia, 0.048 parts per million. Arsenic spring is under the same roof with the White Sulphur and the Chalybeate springs; its distance from the former is about 15 feet; from the latter, about 10 feet. The water is not much used, and at the time of collection contained much foreign matter, such as leaves and twigs. The discharge is about one gallon in ten minutes. No gas escapes. A thin, white, mossy deposit is formed on the sides of the sewer tile through which the water flows. Reaction, neutral. (A. G. S. Ann. Rept. 1891, vol. 1, p. 87-88) #### STATE SALT SPRING $SE_{4}^{1}$ $NW_{4}^{1}$ , Sec. 22, T. 6 S., R. 19 W., near Arkadelphia. 40 acres, sold to J. E. M. Barkman, by state, April 20, 1854, for \$1.25 per acre (then in Hot Spring County). Elev. 198 feet (approximately). (Office of Commissioner of State Lands) No. 58 #### STATE SALT SPRING $SE_{4}^{\frac{1}{4}}$ , Sec. 21, T. 6 S., R. 19 W., near Arkadelphia. Sold to Jacob Barkman in 1834, by United States, for \$1.25 per acre. Elev. 198 feet (approximately). (Office of Commissioner of State Lands) No. 59 #### STATE SALT SPRING SW<sup>1</sup>/<sub>4</sub> NE<sup>1</sup>/<sub>4</sub>, Sec. 3, T. 7 S., R. 19 W., near Arkadelphia. 120 acres, sold to Geo. W. Reed, assignee of Jas. K. Rogers, by state, June 26, 1872, for \$1.25 per acre. Elev. 180 feet (approximately). (Office of Commissioner of State Lands) No. 60 #### STATE SALT SFRING $NW_{4}^{\frac{1}{4}}$ Sec. 10, T. 7 S., R. 19 W., near Arkadelphia. 120 acres, sold to Geo. W. Reed, assignee of Jas. K. Rogers, by state, June 26, 1872, for \$1.25 per acre. Elev. 170 feet (approximately). (Office of Commissioner of State Lands) No. 61 #### SALINE SPRING #### DAVIDSON'S CAMP GROUND SPRING NE<sup>1</sup>/<sub>4</sub> NE<sup>1</sup>/<sub>4</sub>, Sec. 6, T. 8 S., R. 21 W., Hollywood. This spring is now known as the Davidson's Methodist Camp Ground Spring and is the same as the above. It is a large spring of clear cold water. It has been used as a water supply for the camp for more than 50 years. It is adjacent to No. 62. Elev. 297 feet. (Ark. Geol. Surv. files.) No. 63 ## MINERAL SIRINGS T. 8 S., R. 23 W., two miles northeast of Antoine Post Office, a quarter of a mile south of the military road, on the Smith-Okolona road, six miles north of Okolona, the nearest railway point. Seven springs issue near each other, and one larger spring a short distance away. These springs are well tiled, and the large one has a cover. The water issues from a dark colored, sandy deposit, with streaks of black shale or clay, all of which are probably of Cretaceous age. These beds dip to the south at an angle of 45°. Elev. 283 feet. (A. G. S. Ann. Rept. 1891, vol. 1, p. 111) No. 64 #### WHELEN SPRINGS $NW_{4}^{\perp}$ $NW_{4}^{\perp}$ , Sec. 35, T. 10 S., R. 20 W., Whelen Springs. Elev. 247 feet. (Gurdon Quad. U. S. G. S.) #### CLEBURNE COUNTY No. 65 #### QUITMAN SPRING T. 9 N., R. 11 W., near Quitman. This spring is used occasionally for medicinal purposes. A strong spring of chalybeate water is located 200 yeards below this spring. A number of sulphur and other mineral springs are reported in the surrounding region. Elev. 480 feet. (U. S. G. S. W 102) No. 66 ## SUGAR LOAF SPRING (ARSENIC) $SW_4^1$ $SE_4^1$ , Sec. 14, T. 10 N., R. 10 W., at Heber Springs. The springs in the City of Heber Springs drain into Spring Creek of Little Red River. There are a number of them and they furnish the municipal supply for the city. This spring is about 48 inches in depth. Elev. 348 feet. Analysis of Water Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Soda Na2CO3 Carbonate of Magnesia MgCO3 Sulphate of Lime CaCO3 Sulphate of Soda Na2SO4 Sulphate of Alumina Al2(SO4)3) Nitrate of Lime Ca(NO3)2) Total | Grains per U.S. gallon 1.43 1.88 2.21 1.30 5.53 .70 .14 .03 13.22 | Per cent of total solids 10.82 14.22 16.72 9.83 41.83 5.29 1.06 .23 100.00 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------| | Found. | 10,22 | 100,00 | | Silica SiO <sub>2</sub> | 1.43<br>1.20<br>.37<br>3.10<br>.04<br>.57<br>4.81<br>.02<br>1.14<br>12.68 | 11.27<br>9.47<br>2.91<br>24.45<br>.32<br>4.49<br>37.94<br>.16<br>8.99<br>100.00 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; temperature of water, 59° F. Total solids in solution, 15.18 grains per U. S. gallon. Free ammonia, 0.086 parts per million. Albuminoid ammonia, 0.048 parts per million. Arsenic spring is under the same roof with the White Sulphur and the Chalybeate springs; its distance from the former is about 15 feet; from the latter, about 10 feet. The water is not much used, and at the time of collection contained much foreign matter, such as leaves and twigs. The discharge is about one gallon in ten minutes. No gas escapes. A thin, white, mossy deposit is formed on the sides of the sewer tile through which the water flows. Reaction, neutral. (A. G. S. Ann. Rept. 1891, vol. 1, p. 87-88) #### BLACK SULPHUR SPRING Sec. 14-23, T. 10 N., R. 10 W., Heber Springs. The discharge of this spring is one gallon in three minutes. When the sample was taken a little inflammable gas was escaping. A heavy white ropy deposit, which waves to and fro in the water, is formed on the sides of the tile in which the water collects. Objects on which the deposit collects are turned black. Reaction, neutral. The spring is owned by the Town of Heber Springs. Discharge, 1/3 g.p.m. Elev. 348 feet. Analysis of Water #### Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |--------------|--------------------------------------------------------------------|--------------------------------------------------------------------------| | Silica SiO2 | .93<br>.96<br>14.65<br>2.61<br>3.95<br>2.69<br>.07<br>.01<br>25.87 | 3.59<br>3.71<br>56.59<br>10.13<br>15.27<br>10.40<br>.27<br>.04<br>100.00 | | Found. | | | | Silica SiO2 | .93<br>7.25<br>.74<br>2.21<br>.02<br>1.90<br>11.94<br>.01 | 3.60<br>29.09<br>2.86<br>8.55<br>.08<br>7.35<br>46.19<br>.04<br>2.24 | | Total | 25.85 | 100.00 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 38.66° F.; temperature of water 61.7° F. Total solids in solution, 30.87 grains per U. S. gallon. Hydrogen sulphide gas, 0.02 grains per U. S. gallon. Free ammonia, 0.01 parts per million. Albuminoid ammonia, 0.01 parts per million. (A. G. S. Ann. Rept. 1891, vol. 1, p. 89) #### RED SULPHUR SPRING $SW_{4}^{\frac{1}{4}}$ Sec. 14, T. 10 N., R. 10 W., at Heber Springs. The discharge is 1152 gallons in 24 hours. Elev. 348 feet. #### Analysis of Water #### Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Soda Na <sub>2</sub> CO <sub>3</sub> Carbonate of Magnesia MgCO <sub>3</sub> Carbonate of Lime CaCO <sub>3</sub> Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> Sulphate of Alumina Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> ) Nitrate of Lime Ca (NO <sub>3</sub> ) <sub>2</sub> ) Total | Grains per U.S. gallon .75 6.45 11.73 .76 3.44 1.79 .07 .01 25.00 | Per cent of total solids 3.00 25.80 46.92 3.04 13.76 7.16 .28 .04 100.00 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------| | Found. Silica SiO2 Sodium Na Magnesium Mg Alumina Al2O3 Sulphuric Acid SO4 Carbonic Acid CO3 Nitric Acid NO3 Chlorine Cl Total | .75<br>8.18<br>.27<br>1.93<br>.02<br>1.30<br>8.63<br>.01<br>3.91<br>.25.00 | 3.00<br>32.72<br>1.08<br>7.72<br>.08<br>5.20<br>34.52<br>.04<br>15.64<br>100.00 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; of water, 61.7° F. Total solids in solution, 34.63 grains per U. S. gallon. Free ammonia, 0.02 parts per million. Albuminoid ammonia, 0.01 parts per million. (A. G. S. Ann. Rept. 1891, vol. 1, p. 92.) No. 69 #### EYE SPRING Sec. 14-23, T. 10 N., R. 10 W., at Heber Springs. The discharge of this spring is very weak--only one gallon in thirty minutes. The spring is owned by the Town of Heber Springs. The water is used for medicinal purposes. Elev. 348. (A. G. S. Ann. Rept. 1891, vol. 1, p. 91) No. 69--Continued Analysis of Water Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon .96 1.16 14.49 2.39 4.08 2.67 .06 .01 25.82 | Per cent of total solids 3.72 4.49 56.12 9.26 15.80 10.34 .23 .04 100.00 | |---------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------| | Found. | | | | Silica SiO2 | .96<br>7.54<br>.68<br>2.28<br>.02<br>1.87<br>11.75<br>.01<br>.70 | 3.72<br>29.20<br>2.64<br>8.83<br>.08<br>7.25<br>45.51<br>.05<br>2.72 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; of water, 54.5° F. Total solids in solution, 31.39 grains per U. S. gallon. Hydrogen sulphide gas, 0.002 grains per U. S. gallon. Free ammonia, 0.01 parts per million. Albuminoid ammonia, 0.01 parts per million. No. 70 #### WHITE SULPHUR SPRING SW: SE:, Sec. 14, T. 10 N., R. 10 W., at Heber Springs. This spring is owned by the Town of Heber Springs. It has a discharge of about 1440 gallons in 24 hours. #### No. 70 -- Continued # Analysis of Water Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |--------------|------------------------------------------------------------------|------------------------------------------------------------------------| | Silica SiO2 | 1.44<br>1.77<br>1.02<br>1.45<br>7.09<br>1.25<br>.10<br>.01 | 10.19<br>12.53<br>7.22<br>10.26<br>50.17<br>8.85<br>.71<br>.07 | | Found. | | | | Silica SiO2 | 1.44<br>1.92<br>.41<br>3.97<br>.03<br>.47<br>4.81<br>.01<br>1.07 | 10.19<br>13.59<br>2.90<br>28.10<br>.21<br>3.33<br>34.04<br>.07<br>7.57 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; of water, 59.9° F. Total solids in solution, 16.66 grains per U. S. gallon. Free ammonia, 0.01 parts per million. Albuminoid ammonia, 0.01 parts per million. (A. G. S. Ann. Rept. 1891, vol. 1, p. 93) #### No. 71 ## CHALYBEATE SPRING Sec. 14-23, T. 10 N., R. 10 W., at Heber Springs. The discharge of this spring is about 1 gallon in 15 minutes. Elev. 348 feet. No. 71 -- Continued Analysis of Water Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Soda Na <sub>2</sub> CO <sub>3</sub> Carbonate of Magnesia MgCO <sub>3</sub> Carbonate of Lime CaCO <sub>3</sub> Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> Sulphate of Alumina Al <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> ) Nitrate of Lime Ca(NO <sub>3</sub> ) <sub>2</sub> ) Total | Grains per U.S. gallon 1.16 1.13 .81 1.37 6.09 1.06 .04 .04 11.67 | Per cent of total solids 9.94 9.68 6.94 11.75 52.18 9.08 .34 .06 100.00 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------| | Found. | · | • | | Silica SiO2 | 1.16<br>1.09<br>.39<br>3.41<br>.01<br>.76<br>4.15<br>.01<br>.69 | 9.94<br>9.34<br>3.34<br>29.22<br>.09<br>6.51<br>35.56<br>.09<br>5.91 | Water collected by assistant J. F. Newsom, October 30, 1891. Analysis by A. E. Menke. Temperature of air, 45.68° F.; of water, 56.30° F. Total solids in solution, 13.76 grains per U. S. gallon. Free ammonia, 0.01 parts per million. Albuminoid ammonia, 0.01 parts per million. (A. G. S. Ann. Rept. 1891, vol. 1, p. 90) No. 72 #### PEARSON SERING Sec. 32, T. 10 N., R. 10 W., at Fearson. Another fine spring of water, similar in quality to that of Mr. Stacy's is reported on the land of Louis Porten, while a spring of white sulphur water is reported on the land of J. T. Hargle-wood, 2 miles to the west. The Pearson Spring is pure and is used for medicinal purposes. Elev. 450 feet. (U. S. G. S. W. 102) #### COLUMBIA COUNTY No. #### MACEDONIA SPRING Sec. 25, T. 18 S., R. 21 W., at Macedonia. Elev. 250 feet (approximately). (U. S. G. S. P 46) #### CONWAY COUNTY No. #### STILLMAN SPRING Sec. 31, T. 6 N., R. 17 W., on Petit Jean Mt. South side of Cedar Creek Canyon, imile below Cedar Creek Falls. Elev. 600 feet (approximately). (D. N. Graves, State Park Service). No. #### SPRINGFIELD TOWN SPRING Sec. 11?, T. 7 N., R. 15 W., at Springfield. The spring is owned by the Town of Springfield. "Another chalybeate spring of the same character occurs at Peach Orchard gap, in section 20, township 6 north, range 10 west, in the edge of White County, and belongs to Mr. Elliott." Elev. 401 feet. #### Analysis of Water Carbonic Acid; Bicarbonate of Lime; Bicarbonate of Magnesia; Bicarbonate of the Protoxide of Iron (strong). (A. G. S. Ann. Rept. 1891, vol. 1, p. 114) ## QUESENBURY AND FERRING SPRINGS Sec. 21, T. 10 M., R. 29 W., within a few miles of Mulberry. The owner of the spring is W. P. Winfrey. Elev. 292 feet. (U. S. G. S. W. 102) No. 78 #### DEAN SPRINGS Swa $S_{N}^{1}$ , Sec. 16, T. 10 N., R. 30 W., at Dean Springs. They come from Winslow sandstone. The water is soft coming as it does from sandstone. Elev. 750 feet (approximately). (U. S. G. S. W 145, p. 87) No. #### FINE SPRINGS SEL SEL, Sec. 18, T. 10 N., R. 30 W., near Dean Springs. The water is soft. Elev. 750 feet (approximately). (U. S. G. S. W 145, p. 87) No. ## STEWART SPRING Sec. 11, T. 10 N., R. 31 W., near Stewart. The water is soft. Elev. 1000 feet (approximately). (U. S. G. S. W 145, p. 87) No. ## OLIVER SPRING SET SET, Sec. 20, T. 10 N., R. 31 W., near Rudy. The water is soft. Elev. 494 feet (approximately). (U. S. G. S. W 145, p. 87) No. ## DRIPPING SPRINGS NET NW, Sec. 27, T. 10 N., R. 32 W., near Stattler. The water is soft. Elev. 750 feet (approximately). (U. S. G. S. W 145, p. 87) #### SEMPHERD SPRING Sec. 4, T. 11 N., R. 29 W., 6 miles northeast of U. S. Highway 71, which is left at concrete bridge two miles north of Mountainburg. Elev. 1200 feet (approximately). (Where to go in the Ozarks, p. 112) No. #### MINERAL SPRINGS Sec. 32, T. 11 N., R. 32 W., $1\frac{1}{3}$ miles northeast of Uniontown. This spring is strong in sulphur and is used locally for medicinal purposes. The spring is enclosed. Elev. 859 feet. (U. S. G. S. W 145, p. 87) No. #### STATE SALT SPRING SE<sup>1</sup>, Sec. 2, T. 11 M., R. 33 W., near Uniontown. Elev. 755 feet (approximately). (Office of Commissioner of State Lands) No. #### WINFREY SPRING Sec. 17, T. 12 N., R. 29 W., at Winfrey. The spring comes from Winslow sandstone. The water is soft coming as it does from sandstone. Elev. 1152 feet. (U. S. G. S. W 145, p. 87) No. #### LOCKE SPRING Sec. 33, T. 12 N., R. 29 W., near Locke. This spring comes from Winslow sandstone. The water is soft coming as it does from sandstone. Elev. 1610 feet. (U. S. G. S. W 145, p. 87) .0. #### COLD SPRING SW: SE:, Sec. 8, T. 12 N., R. 32 W., near Liberty Hill. This spring drains into a fork of Cove Creek. Elev. 700 feet (approximately). (U. S. G. S. Winslow Quad.) No. #### SALINE SPRING 13 miles from Van Buren. The chemical reactions indicate only small quantities of saline matter. It is, therefore, a weak saline sulphuretted water. Elev. 425 feet (approximately) ## Analysis of Water A small quantity of free sulphuretted hydrogen. Bicarbonate of Lime. Bicarbonate of Magnesia. Sulphate of Soda (glauber salts). Sulphate of Magnesia, (epsom salts). Chloride of Sodium, (common salt). Chloride of Magnesium. (G. R. of Arkansas, 1859) #### DALLAS COUNTY No. #### MATTOCKS SPRING Sec. 2, T. 9 S., R. 16 W., 8 miles west of Princeton. The spring is owned by Mrs. Helena Mattocks. This water was neutral to test-paper, and had a slight order of sulphuretted hydrogen, though none could be detected in the water by acetate of lead. Its character is that of a weak saline sulphuret, and from the small amount of mineral matter which it contains, cannot be considered unhealthy. Mev. 250 feet (approximately) #### Analysis of Water | | e of Lime A | small | quantity | |---------------|----------------------------------|--------|----------| | Bicarbonate | e of Magnosia A | small | quantity | | | | small | quantity | | Sulphate of | f Magnesia A | small | quantity | | | | small | quantity | | (A. G. S., Se | econd Rept. Reconnaissance-1860, | p. 411 | _) | tour Sow of the Start Converte - 18" basen. Copperas frings. We constant. Leo Wa Henry - #### FAULKNER COUNTY No. #### RIGGIN SPRING Sec. 3?, T. 6 N., R. 11 W., near Holland. The spring is owned by C. B. Riggin. It issues from slate and is used for domestic purposes. Elev. 300 feet. No. #### PINNACLE SPRINGS SEZ, Sec. 16, T. 8 N., R. 13 W., Pinnacle Springs. The spring is owned by C. C. Martin, Pinnacle Springs. The water forms a heavy deposit of iron and issues from a crevice in a sandstone bluff, immediately west of Cadron Creek. The rock beds in this locality lie approximately flat. Cadron Creek cutting deep down through these flat beds makes the landscape very rugged and picturesque. Elev. 390 feet (approximately) #### Analysis of Water #### Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |--------------|----------------------------------------------------|----------------------------------------------------------------| | Silica SiO2 | .277 2.007 .277 13.649 .184 1.435 .323 .338 18.490 | 1.50<br>10.85<br>1.50<br>73.82<br>1.00<br>7.76<br>1.75<br>1.82 | Analyzed in 1881, by Messrs. Wright and Merrill, of St. Louis, Missouri. Carbonic acid gas, (cubic inches) 38.3. (A. G. S. Ann. Rept., 1891, vol. 1, p. 76) #### FRANKLIN COUNTY No. #### MANITOU SPRING Sec. 5, T. 10 N., R. 27 Y., Ozark. The spring is owned by the Manitou Springs Company. This spring issues from candstone are has a vellowish gelatinous denosit. The temperature of the water from the spring is 61° and the discharge is 4 gallons per minute. Elev. 387.4 feet. (U. S. G. S. W 102) #### FRANKLIN COUNTY No. ## MULBERRY SPRING Sec. 12, T. 11 N., R. 29 W., Mulberry. The water of this spring is soft and there is an iron deposit below the spring. Elev. 292 feet. (U. S. G. S. W 102) No. #### WATALULA SPRING Sec. 35, T. 11 N., R. 27 W., North of Ozark. This spring comes from rocks of Lower Carboniferous age. The water forms a yellow sediment on standing. Elev. 610 feet. (approximately). #### Analysis of Water #### Partial Analysis. | Constituents | Grains per<br>U.S.<br>Zallon | Per cent of total solids | |--------------------------------------------------------------------------------------------|------------------------------|--------------------------| | Silica SiO2 Magnesium Mg Calcium Ca | 1.29<br>.28<br>.57 | 58.64<br>12.73<br>25.90 | | Iron sesquioxide Fe <sub>2</sub> 0 <sub>3</sub> ) Alumina Al <sub>2</sub> 0 <sub>3</sub> ) | .06 | 2.73 | | Total | 2.20 | 100.00 | Water collected by assistant Arthur Winslow. Total solid material in solution, 5.66 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 100) No. #### STATE SALT SPRING SW: NE:, Sec. 24, T. 11 N., R. 28 W., Mulberry. Elev. 750 feet (approximately). (Office of Commissioner of State Lands) #### Analysis of Water "Chloride of sodium (common salt). Bicarbonate of lime. Bicarbonate of magnesia. Bicarbonate of the protoxide of iron. Sulphates, a trace." Quoted from Owen. It is a saline water and flows from rocks of the Goal Measures. (A. G. S. Ann. Rept. 1891, vol. 1, p. 115) #### FRANKLIN COUNTY No. 97 #### CHALYBEATE SPRING $1\frac{1}{2}$ miles northeast of Bonner's Mill near William Parker's house. This water appears to contain a considerable amount of oxide of iron, and it is therefore somewhat remarkable that it should also indicate, with acetate of lead, the presence of sulphuretted hydrogen, a combination that can only exist when the oxide of iron is held in solution by a free acid. At and near Mr. Parker's spring, is seen the following succession of rocks: coarse-grained sandstone, alternating with flagstones, reddish-yellow and gray shales; in all about two hundred feet. In the gray shales, ten feet above the spring, there is a thin coal-dirt. Elev. 533 feet. Analysis of Water Bicarbonate of Lime. Bicarbonate of Magnesia. Bicarbonate of the Protoxide of Iron. (First Rept. G. R. 1857, p. 228) #### FULTON COUNTY No. 98 #### MAMMOTH SPRING Sec. 5-8, T. 21 N., R. 5 W., 1/8 of a mile north of Mammoth Spring Post Office. This spring issues as a subterranean stream near the base of a high bluff of cherty limestone. The course of the subterranean river that feeds the spring is thought to be marked, 8 miles northwest, by a sink hole three-fourths of a mile long known as the "Grand Gulf." The spring pool is 64 feet deep at its mouth, and the water apparently issues from a large cavern and from other large crevices in the limestone. The water is described as having a bluish tinge but as being odorless and tasteless and having a temperature of 58° or 59° F. in summer. The water is hard having about 158 parts per million of lime and 139 parts of magnesia. The discharge was estimated by Purdue at about 150,000 gallons a minute, or about 335 second-feet, but in 1904 it was, according to Fuller, as low as 150 second-feet. On December 13, 1922, the discharge was 258 second-feet, according to a #### FULTON COUNTY measurement by F. H. Davis, of the United States Engineer Office at Memphis, Tenn. The Morgan Engineering Co., made a number of approximate measurements of this spring and concluded that the discharge at low stages is about 250 second-feet. The water from the spring is now used to operate a modern hydroelectric plant, which, according to the owners, develops 1,100 horsepower and supplies electric energy for the town of Mammoth Springs and for several towns in Missouri. Elev. 500 feet (approximately). (U. S. G. S. W 557, 1927, p. 21). #### GARLAND COUNTY No. 300 99 #### HOT SPRINGS Sec. 2 and 3, T. 3 S., R. 19 W., Hot Springs. There are 47 hot springs which gush from the base of Hot Springs Mountain in a daily flow of nearly 1,000,000 gallons. They supply 19 splendidly equipped Bath Houses and sanatariums, as well as the Government's own Army and Navy Hospital, recently completed at a cost of \$1,500,000. Elev. 579.1 feet (approximately) Table of Hot Springs in Hot Springs National Park - 1. Egg Spring--Water about 8 feet below surface of ground. - 2. Arsenic Spring. - 3. Arlington Spring--Spring issues from between rock ledges. Water level 7 feet below ground. Spring lies beneath gentle grassy slope. - 4. Cliff Spring -- Outflow from base of tufa cliff. - 5. Avenue Spring--Outflow resulted from excavations and spring is not on the old maps. - 6. Bath House Spring. - 7. Imperial Spring--This spring is the result of sink-ing a hole to develop hot water in 1892. - 8. Crystal Spring. - 9. Rector Spring -- Outflow from base of tufa cliffs. - 10. Cave Spring--The mound about this spring has been dissected by an open cut 5 feet wide extending from the border to the center. The best example of recent tufa formation is seen here. - 11. Little Iron Spring--This spring is one of a cluster of three or more seepages and outflows gathered into the long narrow reservoir built against the base of the tufa bluff. - 12. Little Geyer Springs - 13. Little Iron South Spring. - 14. Ral Spring -- This spring flows from a mound of tufa. - 15. Big Iron Spring--The spring comes from under bottom of tufa cliff 5 to 6 feet below the present surface of the ground. - 16. Imperial Spring South. - 17. Arsenic Spring North -- Lies at base of tufa cliff. - 18. Hitchcock Spring--Water level 11 to 12 feet below surface of grassy flat. - 19. Sumpter Spring. - 20. Superior Spring North--Occurs beside sandstone outcrop. - 21. Alum Spring. - 22. Superior Spring South--Lies at end of sandstone reef. - 23. Twin Spring North. - 24. Twin Spring South. - 25. Old Hale Spring. - 26. Palace Spring. - 27. Tunnel Spring. - 28. Maurice Spring. - 29. Dripping Spring--It drops from freshly deposited tufa, colored green by hot water algae. - 30. Arch Spring. - 31. Haywood Spring. - 32. Noble Spring. - 33. Lamar Spring. - 34. Wiley Spring. - 35. Harding Spring. - 36. Eisele Spring. - 37. Stevens Spring. - 38. Horseshoe Spring. - 39. Army and Navy Spring. - 40. W. J. Little Spring. - 41. Mud Spring. - 42. Magnesia Spring. - 43. Reservoir/Spring - 44. Liver Spring -- Cold-water spring. - 45. Kidney Spring -- Cold-water spring. - 46. Fordyce Spring. - 47. New Spring. Typical Analysis of Not Springs National Fark Water | | Grains | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------| | Silica Acid | 24.74 | | Sesqui Cxide of Iron | 1.12 | | Alumina | 5.15 | | Line | 28.93 | | Nagnosia | •73 | | Chlorine | .07 | | Carbonic Acid | 21.36 | | Organic Matter | 8.31 | | Water Care and the control | 1.72 | | Sulphuric Acid | 4.40 | | Sulphuric Acid | 1.46 | | | 2.01 | | Iodide and Bromide, a trace | 300.00 | | | 100.00 | | (United States Department of Interior. The of Arkansas) | mot springs | No. #### MOUNTAIN VALLEY SPRING NEW, Sec. 19, T. 1 S., R. 19 W., 12 miles north of Hot Springs. The spring is owned by Mountain Valley Springs Company. The water comes from rocks of the Lower Silurian formation on the south side of a considerable ridge. It tastes of iron and forms an iron deposit in the spring; the reaction is neutral. Elev. 750 feet. (approximately). Analysis of Water Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent<br>of total<br>solids | |---------------------------------|------------------------------|--------------------------------| | Silica SiO2 | .91 | 5.51 | | Chloride of Soda MaCl | .43 | 2.60 | | Carbonate of Magnesia MgCOz | 1.90 | 11.50 | | Carbonate of Lime CaCO3 | 11.38 | 68.86 | | Sulphate of Soda Na2SO4 | •64 | 3.33 | | Sulphate of Potash K2SO4 | •06 | .37 | | Sulphate of Magnosia Mg504 | .74 | 4.49 | | Sulphate of Iron FeSO4 | .02 | .12 | | Sulphate of Alumina (Al2(SO4)3) | •44 | 2.67 | | Total | 16.52 | 100.00 | 100 No. kGk-Analysis continued | | Grains per U.S. | Per cent of total | |----------------------------------------------------------|-----------------|-------------------| | | gallon | solids | | Found. | | | | Silica SiO <sub>2</sub> | •91 | 5.51 | | Sodium Na | •38 | 2.30 | | Potassium K | •03 | 0.19 | | Magnesium Mg | •69 | 4.18 | | Calcium Ca | 4.55 | 27.51 | | Iron Fe | •01 | •06 | | Aluminum | •07 | • 43 | | Barium and Strontium Ba, Sr | •00 | •00 | | Sulphuric Acid SO4 | 1.45 | 8.78 | | Carbonic Acid CO3 | 8.18 | 49.46 | | Bromine, Iddine, Manganese,<br>Titanium, Lithium (Br, I, | | | | Mn, Ti, Li) | •00 | •00 | | Chlorine Cl | •26 | 1.58 | | Phosphoric Acid P205 | 00 | 00 | | Total | 16.53 | 100.00 | The water for analysis was collected by assistant L. S. Griswold, from the largest and most used spring at Mountain Valley. (A. G. S. Ann. Rept. 1891, vol. 1, p. 69) #### No. 101 ### GRANDEA CHASE'S SPRENGS NW<sup>1</sup>/<sub>4</sub> NW<sup>1</sup>/<sub>4</sub>, Sec. 30, T. 2 S., R. 18 W., 6 miles northeast of the City of Hot Springs. The best known of the springs are the Red Chalybeate and the Dripping springs. These come from the north face of Cutter's Mountain and are on the south side of the middle fork of Gulpha Creek. The rocks of this region belong to the Lower Silurian age. These little springs issue almost at the foot of the north slope of Cutter's Mountain, on the west bank of the middle fork of Gulpha Creek. The water is clear, tasteless and odorless, with a neutral reaction. No deposit of iron is made by the water. The water for analysis was collected from what appeared to be the boldest of these springs, which is next to the last one going up the creek (east), and low down on the bank of the creek. The flow of this spring is intermittent. A stream of clear water about the size of an ordinary lead pencil flows from five to ten minutes at a time. Elev. 533 feet. 47 ## Analysis of Water from Dripping Spring #### Hypothetical Combination | Constituents Silica SiO <sub>2</sub> | Grains per U.S. gallon .81 .30 .05 .20 10.90 .59 .19 .20 13.24 | Fer cent of total solids 6.12 2.26 .38 1.51 82.33 4.46 1.43 1.51 100.00 | |---------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------| | Silica SiO <sub>2</sub> | .81<br>.12<br>.03<br>.17<br>4.42<br>.00<br>.07<br>trace<br>.73<br>6.54<br>.36<br>.00 | 6.11<br>.90<br>.23<br>1.28<br>33.36<br>.00<br>.53<br>trace<br>5.51<br>49.36<br>2.72<br>.00 | Water collected by R. N. Brackett, November 3, 1889. Temperature of water, 59.18° F. Total solid material in solution, 13.003 grains per U. S. gallon. Carbonic Acid CO<sub>2</sub>, free and for bicarbonates, 3.33 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vel. 1, p. 48) No. ## McLEMDON HEALTH SPRINGS SW: NE; Sec. 32, T. 2 S., R. 18 W., 7 miles east of Hot Springs. The springs are owned by Bertha J. Busch. Four springs, combined flow about 40,000 gallons per day. They are marketed by McLendon Health Spring Water Company. Elev. 400 feet (approximately). (Bertha J. Busch) No. 102/ Analysis of Water from McLendon Spring | | Parts<br>per<br><u>million</u> | |---------------------------------------|--------------------------------| | Silica Oxide | 8.5 | | Iron Fe | 0.6 | | Aluminum Al | 1.6 | | Lime Ca | 42.5 | | Magnesium Mg | 3.6 | | Sulphates SO4 | 8.7 | | Chlorine Cl | 5.0 | | Sodium Na | 1.1 | | Potassium K | 2.1 | | Lithium Li | 0.5 | | Carbonate radicle CO3 | 66.0 | | Total Solids | 140.0 | | Volatile Substances (Bertha J. Busch) | 10.0 | No. XXX 103 #### BIG CHALYBEATE SPRING NW<sup>1</sup>/<sub>4</sub> SE<sup>1</sup>/<sub>4</sub>, Sec. 22, T. 2 S., R. 19 W., Mountain Valley. This spring comes from shales of Lower Silurian age, that underlie the novaculites of that region. The spring is rectangular in shape, about 6 feet wide by 9 feet long and from 15 inches to 2 feet deep. The loose rocks in the bottom of the pool are covered with patches of flocculent, moss-like deposit, of pale greenish or reddish yellow color, adhering in places. The deposit in the stream flowing from the spring is lightreddish yellow near the spring, changing to bright, slightly yellowish red farther away. The discharge of the spring is 268,540 gallons every 24 hours (determined by H. D. Mitchell) Elev. 750 feet (approximately). #### Analysis of Water #### Hypothetical Combination | Constituents | Grains per U.S. | Per cent of total | |-----------------------------|-----------------|-------------------| | | gallon | solids | | Silica SiO <sub>2</sub> | .22 | 1.65 | | Chloride of Soda NaCl | .20 | 1.50 | | Chloride of Lithium LiCl | trace | trace | | Carbonate of Magnesia MgCO3 | 1.12 | 8.39 | ## No. box - Analysis continued | Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Potash K2SO4 Sulphate of Magnesia MgSO4 - Total | Grains per U.S. gallon 10.24 .89 .66 .02 13.35 | Per cent<br>of total<br>solids<br>76.70<br>6.67<br>4.94<br>.15 | |-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> | .22<br>.08<br>.18<br>.24<br>4.10<br>.43<br>.55<br>7.50<br>.12 | 1.64<br>.60<br>1.34<br>1.79<br>30.55<br>3.20<br>4.10<br>55.89<br>.89 | Water collected by assistant H. E. Williams; analysis by A. E. Menke. Total solid material in solution, 12.08 grains per U. S. gallon. Temperature of air, 40.28° F.; water, 78.98° F. (A. G. S. Ann. Rept. 1891, vol. 1. p. 28) No. 104 #### RED CHALYBEATE SPRING NE<sup>1</sup>/<sub>4</sub> NE<sup>1</sup>/<sub>4</sub>, Sec. 25, T. 2 S., R. 19 W., 6 miles northeast of Hot Springs. The spring forms a copious deposit of reddish brown hydroxide of iron on the sides and on the bottom. It is clear, and has a very slight odor but no sulphuretted hydrogen. This spring is one of Grandma Chase's. Elev. 533 feet (approximately) #### Analysis of Water #### Hypothetical Combination | Constituents | Grains per<br>U.S. | Per cent of total | |----------------------------------------|--------------------|-------------------| | • | <u>gallon</u> | solids | | Silica SiO <sub>2</sub> | .72 | 24.74 | | Chloride of Soda NaCl | .08 | 24.75 | | Chloride of Potash KCl | .01 | .34 | | Chloride of Magnesia MgCl <sub>2</sub> | .19 | 6.53 | ## No. 105--Analysis continued | Carbonate of Lime CaCO <sub>3</sub> Sulphate of Magnesia MgSO <sub>4</sub> Sulphate of Lime CaSO <sub>4</sub> Sulphate of Iron FeSO <sub>4</sub> Total | Grains per U.S. gallon .18 .49 .49 .75 2.91 | Per cent of total solids 6.53 16.84 16.84 25.77 100.00 | |--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Lithium Li Iron Fe | .72<br>.03<br>.005<br>.14<br>.22<br>good trace<br>.27 | 24.87<br>1.04<br>.17<br>4.84<br>7.60<br>good trace | | Aluminum Al | trace<br>1.21<br>.11<br>.19 | 7.33<br>trace<br>41.79<br>3.80<br>6.56<br>strong trace | Water collected by R. N. Brackett, November 3, 1889. Amount of water used for analysis, $1\frac{1}{2}$ gallons. Temperature of water, 62.78° F. Total solid material in solution, 3.02 grains per U. S. gallon. Carbonic Acid CO2, free and for bicarbonates, 6.34 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 50) No. 105 ## GILLER'S WHITE SULPHUR SPRING $SE^{\frac{1}{4}}$ , Sec. 26, T. 2 S., R. 19 W., 3 miles northeast of Hot Springs. The water comes from rocks of Lower Silurian age and is said to have good medicinal properties. #### Analysis of Water #### Constituents Carbonates of iron, lime, and magnesia; traces of organic matter and very small quantities of sulphuric acid and free carbonic acid. 51 # No. 105 No. 126-Analysis continued Chlorine is absent. Sulphuretted hydrogen cannot be detected even in traces. Exposed to the air, iron oxide in small amount is slowly deposited. Total residue on evaporation, sixteen grains to a gallon. Altogether similar in compostion to "Mountain Valley" water, near Hot Springs. Elev. 525 feet (approximately). (A. G. S. Ann. Rept. 1891, vol. 1, p. 107). #### No. 12 106 #### BLANCO SPRING $NE_{4}^{1}$ , Sec. 1, T. 2 S., R. 21 W., Cedar Glades. It is in rocks of the Lower Silurian formation. Elev. 810 feet (approximately). Analysis of Water Hypothetical Combination | | Grains per | Per cent | |----------------------------------------|--------------|-----------------| | Constituents | U.S. | of total | | | gallon | solids | | Silica SiO2 | 1.29 | 7.93 | | Chloride of Potash KCl | .06 | •37 | | Chloride of Magnesia MgCl2 | .51 | 3.13 | | Carbonate of Soda NagCO3 | •53 | 3.26 | | Carbonate of Potash K2CO3 | .28 | 1.72 | | Carbonate of Magnesia MgCO3 | 1.16 | 7.13 | | Carbonate of Lime CaCO3 | 11.71 | 71.98 | | Sulphate of Magnesia MgSO4 | .14 | .86 | | Sulphate of Lime CaSO4 | .52 | 3.20 | | Iron Oxide FeoOz | .03 | .18 | | Alumina Alaga | .04 | .24 | | Alumina Al <sub>2</sub> 0 <sub>3</sub> | 16.27 | 100.00 | | | | 1 | | Found. | | | | Silica SiO <sub>0</sub> | 1.29 | 7.93 | | Silica SiO <sub>2</sub> | .23 | 1.41 | | Potassium K | .19 | 1.17 | | Calcium Ca | 4.84 | 29.73 | | Magnesium Mg | •49 | 3.10 | | Iron Fe | .02 | .12 | | Aluminum Al | .02 | .12 | | Sulphuric Acid SO | .48 | 2.95 | | Carbonic Acid CO. | 8,28 | 50.86 | | Sulphuric Acid SO <sub>4</sub> | .41 | 2.52 | | Oxygen (basic) | .03 | .18 | | Total | 16.28 | 100.00 | | Total solid material in solution, | 16.41 grains | per U. S. gal. | | | O | That has been a | .78 No. 106 No. 107 -- Continued The natural deposit made by the Blanco spring was analyzed with the following result: Analysis of the deposit made by Blanco Spring. | Silica SiO <sub>2</sub> | 4.81 | |----------------------------------------------------------------------------------------------|--------| | Soda Na <sub>2</sub> 0) by Difference ( | .71 | | Potash Ko) by Difference ( | .71 | | Magnesia MgO | .11 | | Lime CaO | 50.61 | | Iron (ferric oxide) (Fe <sub>2</sub> 0 <sub>3</sub> ) Alumina Al <sub>2</sub> 0 <sub>3</sub> | .42 | | Alumina Al <sub>2</sub> 0 <sub>3</sub> | 1.21 | | Phosphoric Acid P <sub>2</sub> O <sub>5</sub> | .07 | | Loss on ignition | 42.06 | | Total | 100.00 | Water lost at 230°-239° F. (110°-115° C.) Material dried at 230°-239° F. (100°-115° C.) (A. G. S. Ann. Rept. 1891, vol. 1, p. 30-31) No. x30 107 #### CRYSTAL SPRINGS Sec. 34, T. 2 S., R. 22 W. In the black dolomite, near an anticlinal fold, a number of excellent chalybeate springs emerge along the sides of the Crystal Creek. Some of them are quite small, but there are several of large dimensions. These springs are mostly clustered within a small area in the little town of Crystal Springs, which is admirably situated for a watering place. A few of the bowls of the springs are surrounded by evidence of former greater activity, and some have deposits which suggest that thermal waters once overflowed from them. Elev. 814 feet. (A. G. S. Ann. Rept. 1891, vol. 1, p. 106) ## No. 108 #### POTASH SULPHUR SPRINGS NW<sup>1</sup>/<sub>4</sub>, Sec. 17, T. 3 S., R. 21 W., about 7 miles southeast of the City of Hot Springs. The springs, which have attained a wide and valuable reputation for their curative properties, are three in number and are all within a radius of twenty feet. Each spring is under cover; the water wells up in each through large sewer tiles which are imbedded in the rock, and from which the water is dipped. The springs flow from metamorphosed sedimentary rocks but they are very near the line of contact between the sedimentary and the igneous rocks. To the east, north and west of the springs No. 383--Continued are high hills, those east and north being of sedimentary, and those to the west, of igneous origin. Elev. 389 feet. ## Analysis of Water from West Spring #### Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------| | Silica SiO2 | 1.90 | 3.66 | | Chloride of Soda NaCl (common salt) Carbonate of Soda Na <sub>2</sub> CO <sub>3</sub> Carbonate of Magnesia MgCO <sub>3</sub> - Carbonate of Lime CaCO <sub>3</sub> Carbonate of Iron FeCO <sub>3</sub> Carbonate of Manganese MnCO <sub>3</sub> Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> (Glauber's salt) Sulphate of Potash K <sub>2</sub> SO <sub>4</sub> Sulphide of Soda Na <sub>2</sub> S Alumina Al <sub>2</sub> O <sub>3</sub> Total | 5.04<br>10.45<br>trace<br>.49<br>.32<br>trace<br>51.88 | 9.71<br>20.14<br>trace<br>.95<br>.62<br>trace<br>63.22<br>1.70<br>trace<br>trace | | Found. | | | | Silica SiO2 | 1.90<br>17.16<br>.40<br>trace<br>.19<br>.15<br>trace<br>trace<br>22.65<br>6.37<br>3.05<br>trace | 3.66<br>33.08<br>.77<br>trace<br>.37<br>.29<br>trace<br>trace<br>43.67<br>12.28<br>5.88<br>trace | | Total | 51.87 | 100.00 | Water collected by C. B. Gannaway, October, 1887. Analysis by the Geological Survey, C. B. Gannaway analysist. Temperature of the water, 64° F. Total solids in solution, 51.89 grains per U. S. gallon. Free carbonic acid, 2.56 grains per U. S. gallon. Faint order of sulphuretted hydrogen. Analysis of Water from East Spring Hypothetical Combination | Constitutents Silica SiO2 Chloride of Soda NaCl (common | Grains per U.S. gallon 1.60 | | |----------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------| | salt) | 1.91<br>2.52<br>15.00<br>.46 | 4.90<br>6.46<br>38.44<br>1.18 | | Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> (Glauber's salt) Alumina Al <sub>2</sub> O <sub>3</sub> Total | 17.42<br>.11<br>39.02 | 44.64<br>.28<br>100.00 | | Found | | | | Silica SiO2 | 1.60<br>12.92<br>1.32<br>.00<br>.18<br>.11 | 4.12<br>33.29<br>3.41<br>.00<br>.46<br>.28<br>30.46 | | ence) | 8.50<br>.00<br>2.36<br>38.81 | 21.90<br>.00<br>6.08<br>100.00 | Analysis by Prof. F. W. Clarke, chemist of the U. S. Geological Survey. Quoted from Bulleting No. 55 of the U. S. Geological Survey, p. 92. Total solids in solution, 39.04 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 77-78-79.) No. ## SOUR ROCK SPRING 2½ miles west of Hot Springs. This spring is owned by Miss Ruth Van Loon. The water is marketed by Sour Rock Mineral Spring Water Company. Elev. 513 feet (approximately) #### Analysis of Water from Sour Rock Spring | | Parts | Grains per | |--------------------------------|-------------|------------| | | p <b>er</b> | U.S. | | | million | gallon | | Acidity in terms of CaCO3 | 89.0 | 5.192 | | Free carbon dioxide | 32.1 | 1.873 | | Mineral acid and sulphates | 42.0 | 2.450 | | Odornone | | | | Nitratesnone | • | | | Total dissolved solids | 67.2 | 3.920 | | Silica SiO2 | 6.4 | 0.268 | | Oxides of iron and alumina | | | | Al202Fe203 | 6.0 | 0.350 | | Calcium Ca | 7.9 | 0.461 | | Magnesium Mgtrace | | | | Sulphate SO <sub>4</sub> | 23.2 | 1.353 | | Chlorine Cl | 5.0 | 0.292 | | (Analyst: Hale. Laboratory No. | 2080) | | No. #### THREE SISTERS SPRINGS 21 miles off Cedar Glades Road northwest of Hot Springs. The spring is owned by W. M. Cecil and the water is marketed by the McFadden Water Company, Royal Theater Building, Hot Springs. #### Analysis of Water | | Water<br>No. 1 | Water<br>No. 2 | Water<br>No. 3 | |-----------------------------|----------------|----------------|----------------| | | Gr | ains per | gallon | | Sodium chloride | 43.00 | .296 | .207 | | Magnesium chloride | •038 | .11 | .183 | | Potassium sulphate | .26 | .36 | •26 | | Calcium sulphate | .89 | .813 | •89 | | Calcium carbonate | 1.56 | 1.50 | 1.56 | | Oxide of iron and alumina - | .17 | .196 | .192 | | Silica | .95 | .87 | .76 | | (W. M. Cecil) | | | | No. #### HAPPY HOLLOW T. 2 S., R. 19 W., Hot Springs. The spring is owned by the Arlington Hotel, Hot Springs. This water is marketed by the Happy Hollow Springs, Hot Springs. The water is colorless, odorless and tasteless, with neutral reaction. Elev. 580 feet (approximately). No. xxx -- Continued Analysis of Water from Happy Hollow Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Chloride of Potash KCl Chloride of Magnesia MgCl2 Carbonate of Magnesia MgCO3 - Carbonate of Lime CaCO3 Sulphate of Magnesia MgSO4 Sulphate of Alumina Al2(SO4)3 Sulphate of Iron FeSO4 Total | Grains per U.S. gallon .38 .22 .04 .001 .09 .77 .09 .02 .02 1.63 | Per cent of total solids 23.30 13.51 2.45 .05 5.51 47.23 5.51 1.22 1.22 100.00 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Lithium Li Iron Fe Aluminum Al Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> calculated Bromine and Iodine Br, I Chlorine Cl Phosphoric Acid P <sub>2</sub> O <sub>5</sub> Manganese Mn Titanium Ti | .38<br>.09<br>.02<br>.04<br>.31<br>.00<br>.01<br>.004<br>.11<br>.53<br>.00<br>.16<br>trace<br>trace | 23.00<br>5.43<br>1.20<br>2.43<br>18.77<br>.00<br>.54<br>.20<br>6.65<br>32.10<br>.00<br>9.68<br>trace<br>trace<br>.00 | | Total | 1.654 | 100.00 | Total solid material in solution, dried at $110^{\circ}$ - $115^{\circ}$ C., 1.69 grains per U. S. gallon. Free carbonic acid (CO<sub>2</sub>), 4.54 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 52) ### No. 133x 112 ## HAPPY HOLLOW CHALYBEATE T. 2 S., R. 19 W., Hot Springs. This spring is about 100 feet west of the Happy Hollow spring. The water has a faint chalybeate taste and the sides of the pipe through which it flows and the bottom of the spring are **5**\ covered with a flocculent, yellowish-red precipitate of hydrated oxide of iron; the water is colorless and odorless. # Analysis of Water from Happy Hollow Chalybeate Spring ## Hypothetical Combination | Constituents Silica SiO <sub>2</sub> Chloride of Soda NaCl Chloride of Potash KCl Carbonate of Magnesia MgCO <sub>3</sub> Carbonate of Lime CaCO <sub>3</sub> Sulphate of Potash K <sub>2</sub> SO <sub>4</sub> Sulphate of Magnesia MgSO <sub>4</sub> Sulphate of Iron FeSO <sub>4</sub> Sulphate of Alumina AI <sub>2</sub> (SO <sub>4</sub> ) <sub>3</sub> Total | Grains per U.S. gallon .86 .35 .10 .20 .20 .003 .16 1.01 .17 3.05 | Per cent of total solids 28.17 11.46 3.28 6.55 6.55 .10 5.24 33.08 5.57 100.00 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Lithium Li Iron Fe Aluminum Al Manganese Mn Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> Phosphoric Acid P <sub>2</sub> O <sub>5</sub> Chlorine Cl Bromine and Iodine Br and I Earium and Strontium Ba, Sr Titonic Acid TiO | .86<br>.14<br>.05<br>.09<br>.08<br>trace<br>.37<br>.03<br>.00<br>.92<br>.26<br>.00<br>.26 | 28.10<br>4.58<br>1.63<br>2.94<br>2.61<br>trace<br>12.09<br>.98<br>.00<br>30.07<br>8.50<br>.00<br>8.50 | | Titanic Acid TiO2 Total | $\frac{.00}{3.06}$ | $\frac{.00}{100.00}$ | A little less than seven gallons of the water was collected and concentrated for analysis. The temperature of the air ranged from 50.90 to 74.30 F. Average temperature of the water, 64.580 F. Total solid material in solution, 3.81 grains per U. S. gallon. Carbonic acid (CO<sub>2</sub>), free and for bicarbonates, 6.43 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 54) ## SLEEPY WATER NEW NEW, Sec. 27, T. 2 S., R. 19 W., Hot Springs National Park. The spring is owned and the water is marketed by the Chewaukla Mineral Springs Company, 400 W. Erie St., Chicago. It is marketed under the name of Sleepy Water. The approximate flow per day is 16,500 gallons. Elev. 580 feet (approximately). ## Analysis of Water | | Parts | |------------------------------------------------------------|----------------| | | $\mathtt{per}$ | | | million | | Carbon dioxide CO2 | 11.00 | | Chloride Cl | 8.00 | | Sulphates SO4 | 21.00 | | Silicon, as Silicon dioxide SiO2 | 6.70 | | Aluminum, as aluminum oxide Al <sub>2</sub> Õ <sub>3</sub> | 3.07 | | Iron, as ferric oxide Fe <sub>2</sub> 0 <sub>3</sub> | 3.60 | | Calcium oxide CaO | 7.56 | | Magnesium, as magnesium oxide MgO | 1.43 | | Sodium and potassium, as sodium oxide | | | Na20 | 14.10 | | Manganese, as manganese dioxide MnO2 | 0.80 | | Ammonia NH <sub>4</sub> | 0.115 | | (Chewaukla Mineral Springs Company). | | No. #### DE SOTO SPRING Sec. 33, T. 2 S., R. 19 W., Hot Springs National Park. The spring is owned by the Mountain Valley Spring Co., Hot Springs. It is marketed by the De Soto Spring Company, 306 Central Avenue, Hot Springs. The maximum discharge per day is 5,000 gallons. Elev. 578.1 feet. (De Soto Spring Company) # No. LITHOX SPRING Sec. 33, T. 2 S., R. 19 W., Hot Springs National Park. The spring is owned by George W. Jamieson. The water is marketed by the Lithox Mineral Company, 179 Gedar St., Hot Springs. The maximum discharge per day is 25,000 gallons. Elev. 579.1 feet. (Lithox Mineral Company) ## Analysis of Water | | Parts | | |------------------------------------------------------------------------------------------------------------|--------------|------| | | per | | | | million | | | | | | | Silica SiO <sub>2</sub> | 14.45 | | | Oxides of Iron and Aluminum FeO & | | | | $Alg_00_{\pi}$ and any | 18.50 | | | Al <sub>2</sub> 0 <sub>3</sub> | 124.95 | | | Magnesium Mg | 31.43 | | | Sulphates SO <sub>4</sub> | 32.43 | | | Bicarbonates HCO3 | 152.43 | | | Sodium Na | 18.32 | | | Phosphates PO <sub>4</sub> | 3.00 | | | Lithium Li | 1.48 | | | Chlorine Cl | 13.75 | | | Potassium K | 2.97 | | | Total Solids | 391.00 | | | Organic impurities | none | | | Analyst: Wm. F. Manglesdorf, M. D., | Little Rock, | Ark. | | · · | | | No. ## RADIO MAGNESIA SPRINGS Sec. 33, T. 2 S., R. 19 W., Hot Springs National Park. The spring is owned by Thos. H. Hulbert, Est. The water is marketed by the Radio Magnesia Springs Company, 206 Central Avenue, Hot Springs. The maximum discharge per day is 1,000 gallons. Elev. 579.1. | | Parts | |-------------------------------------------------------------------------------------------------------|---------| | | per | | | million | | Silica | •573 | | Ferric oxide | trace | | Alumina | 2.57 | | Calcium Sulphate | 4.96 | | Calcium Bicarbonate | 9.14 | | Magnesium Bicarbonate | 2.02 | | Sodium Chloride | 2.81 | | Free Carbonic Acid | 24.6l | | Analyst: L. McMaster, Professor of Cher<br>Washington University, St. Louis, No.<br>Springs Company). | | #### GARLAND COUNTY No. 117 ## PINE MOUNTAIN SPRING Sec. 26, T. 2 S., R. 17 W., Lonsdale. A spring on Pine Mountain above the station at Lonsdale on the Missouri Pacific Railroad. Elev. 400 feet (approximately). Information and analysis furnished by E. F. Hassensall, 2941 Field Avenue, Detroit, Michigan. ## Analysis of Water | Constituents | Parts per<br>Million | Combining<br>Values | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------| | Calcium (Ca) Iron (Fe) Magnesium (Mg) Aluminum (A1) Sodium (Na) Potassium (K) Silica (SiO <sub>2</sub> ) | 58.40<br>1.34<br>3.61<br>0.16<br>2.77<br>1.22<br>14.47 | 2,920<br>0.072<br>0.300<br>0.120<br>0.031 | | ~ | Total | <b></b> 3.443 | | Bicarbonate Radical (HCO <sub>3</sub> ). Carbonate Radical (CO <sub>3</sub> ). Sulfate Radical (SO <sub>4</sub> ). Chloride Radical(C1). Bromide Radical(Br). Iodide Radical (I). Phosphate Radical (PO <sub>4</sub> ) Nitrate Radical (NO <sub>3</sub> ) Nitrite Radical (NO <sub>2</sub> ). | 176.00** 0.00 15.62 3.00 trace trace 3.00 0.85 0.0005 | 2.885<br><br>0.325<br>0.098<br><br>0.095<br>0.013<br><br>3.416 | | Sum of Constituents<br>Total Residue on Evaporation | 181.00<br>191.31 | | <sup>\*\*</sup> In calculating the sum of the constituents the bicarbonates are converted into carbonates. (Signed) James R. Thayer, P.A., M.S., Ph.D. St. Louis, Mo. #### LONG SPRING Sec. 19, T. 9 S., R. 24 W., near Dotson. Elev. 350 feet (approximately). #### Analysis of Water #### Qualitative Analysis | Magnesium Mg | Chief | constituents | |--------------------------------|-------|--------------| | Sodium Na | Small | quantities | | Sulphuric Acid SO <sub>4</sub> | | little. | The dissolved matter in the water, therefore, appears to be: ``` Chloride of Magnesia MgCl<sub>2</sub> -----) Sulphate of Magnesia MgSO<sub>4</sub> -----) Chloride of Soda NaCl -------) Chloride of Potash KCl ------- Sulphate of Lime CaCl<sub>2</sub> ------- Sulphate of Potash K<sub>2</sub>SO<sub>4</sub> ------- Sulphate of Lime CaSO<sub>4</sub> ------- Sulphate of Oxide of Iron -------) ``` Water collected by Hon. J. D. Conway, Washington, Hemp-stead county. Analysis by Brackett and Smith. Temperature of air, 85° F; of water, 58° F. Total solids in solution, dried on water bath, 4.33 grains per U. S. gallon. Total solid material after ignition, 3.58 grains per U. S. gallon. Upon ignition the solids burn brown and finally white, giving off white fumes with no decided odor. The water is clear, odorless and tasteless. A slight yellowish sediment (iron hydroxide) is formed by the water. (A. G. S. Ann. Rept., 1891, vol. 1, p. 110.) ## SULPHUR SPRING Sec. 28, T. 9 S., R. 25 W., near Hickory Creek. Elev. 300 feet (approximately). (United States Geological Survey p 46) No. ## LITHIA SPRINGS Sec. 19, T. 13 S., R. 24 W., $5\frac{1}{2}$ miles south of Hope. The springs are owned by E. Merrick. The water is clear but has a brownish yellow color and contains much organic matter. A slight sediment was formed in each bottle. Elev. 300 feet (approximately). Analysis of Water Hypothetical Combination | Constituents Silicate of Soda Na <sub>2</sub> SiO <sub>3</sub> Silicate of Potash K <sub>2</sub> SiO <sub>3</sub> Chloride of Soda NaCl Chloride of Magnesium MgCl <sub>2</sub> - Chloride of Lime CaCO <sub>3</sub> Sulphate of Magnesia MgSO <sub>4</sub> Sulphate of Lime CaSO <sub>4</sub> Sulphate of Iron FeSO <sub>4</sub> Sulphate of Alumina (Al <sub>2</sub> (SO <sub>4</sub> ) 3) Organic matter Total | Grains per U.S. gallon 9.62 .02 13.82 11.13 8.02 4.75 4.05 2.81 2.14 7.91 64.27 | Per cent of total solids 14.96 .03 21.53 17.31 12.48 7.39 6.30 4.37 3.33 12.30 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------| | Found | 0.2.6.27 | 100.00 | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Lithium Li Iron Fe Aluminum Al Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> calculated Chlorine Cl Oxygen (basic) Organic matter Total (A. G. S. Ann. Rept., 1891, vol. | 4.74<br>9.08<br>.01<br>3.76<br>4.40<br>undt.<br>1.03<br>.34<br>10.24<br>4.81<br>16.70<br>1.26<br>7.91<br>64.28<br>1, p. 62) | 7.37<br>14.12<br>.02<br>5.85<br>6.84<br>undt.<br>1.63<br>.53<br>15.93<br>7.48<br>25.97<br>1.96<br>12.30 | ## DYKE SPRING Near Hope. Water was hauled from this spring and sold in Hope when it was a village and had but few wells. The price was 25¢ per barrel, 5 buckets for 10¢, and 2 buckets for 5¢. (Hope Star, Centennial Edition, 1936) #### HOT SPRING COUNTY No. ## SULPHUR SPRINGS Sec. 19, T. 3 S., R. 17 W., near Magnet Cove. This spring is owned by Andrew Mitchell. The spring was tested qualitatively at the fountain-head, and found to be an alkaline, saline water, similar in its properties to the Main Fairchild's Spring, but less strongly impregnated with alkalies. Elev. 525 feet. (Arkansas Geological Survey Second Report of a Geological Reconnaissance-1860, p. 106) No. ## CHALYBEATE SPRINGS Sec. 19, T. 3 S., R. 17 W. The spring is owned by Andrew Mitchell. This spring is on Stone quarry Creek. Elev. 199 feet (approximately). #### Analysis of Water Bicarbonate of Iron Bicarbonate of Lime Bicarbonate of Magnesia Chloride of Sodium (Common Salt) Sulphate of Soda Sulphate of Magnesia Subcarbonate of Soda (Arkansas Geological Survey Second Report of a Geological Reconnaissance-1860, p. 106) No. ## DOVE PARE SPRING-No. 1 NEd, Sec. 35, T. 6 S., R. 18 W., 4 miles east of Witherspoon on the Mo. Pac. The Dove Springs were formerly generally known as the "Brown Springs." There are not less than six flowing springs with numerous seeps, many of which might flow if opened. A hill of sand covered with gravel, and about 50 feet high, extends in a general east and west direction along the south side of White Oak Creek south of the springs, forming a bluff on the creek bank a few hundred yards above the main group. At the base of this hill is a small exposure of yellow clay. The soil about the springs is of a clayey nature. A considerable deposit of iron is formed around all the springs. The water has a pleasant taste and no odor. There is no village about the springs, and but few houses, which during the summmer season are often occupied by visitors; in November 1891, there was no one living there, the nearest resident being half a mile south. Water for analysis was collected from these springs by assistant T. C. Hopkins. Analysis of Water Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |--------------------------------------------------------------------------------|------------------------|--------------------------| | Silica SiO2Chloride of Soda NaCl | 3.26<br>1.37 | 29.66<br>12. <b>4</b> 7 | | Carbonate of Magnesia MgCO <sub>3</sub><br>Carbonate of Lime CaCO <sub>3</sub> | .59<br>2.92 | 5.37<br>26.57 | | Carbonate of Iron FeCO3<br>Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> | .7 <b>4</b><br>1.91 | 6.7 <b>3</b><br>17.38 | | Alumina Al <sub>2</sub> 0 <sub>3</sub> Total | $\frac{.20}{10.99}$ | $\frac{1.82}{100.00}$ | | Found. | | | | Silica SiO <sub>2</sub> | 3.26<br>1.16 | 29.69<br>10.56 | | Magnesium Mg | .17 | 1.55 | | Lime CaO | 1.63<br>.35 | 14.84<br>3.19 | | Alumina Al203Sulphuric Acid S04 | .20<br>1.29 | 1.82<br>11.75 | | Carbonic Acid CO3 | 2.09 | 19.04 | | Total | .83<br>10.98 | 7.56<br>100.00 | Analysis by A. E. Menke. Temperature of air, 70.880 F.; temperature of water 61.70 F. Total solids in solution, 11.16 grains per U. S. gallon. (A. G. S. Ann. Rept, 1891, vol. 1, p. 36-37) ## DOVE PARK SPRING-No. 2 $NE_{4}^{\frac{1}{4}}$ , Sec. 35, T. 6 S., R. 18 W., 4 miles east of Witherspoon on the Mo. Fac. (see note under spring No. 127) Elev. 212 feet (approximately) ## Analysis of Water ## Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |--------------------------------------------------------|------------------------|--------------------------| | Silica SiO <sub>2</sub> | 3.60<br>.89 | 39.47<br>9.76 | | Carbonate of Magnesia MgCO3<br>Carbonate of Lime CaCO3 | .79<br>1.97 | 8.66<br>21.60 | | Carbonate of Iron FeC03<br>Sulphate of Soda Na 2804 | .69<br>.96 | 7.57<br>10.53 | | Alumina Al 203 Total | 9.12 | $\frac{2.41}{100.00}$ | | Found. | | | | Silica SiO <sub>2</sub> | 3.60 | 39.48 | | Sodium Na | •66 | 7.24 | | Magnesium Mg | .22 | 2.42 | | Lime CaO | 1.10 | 12.05 | | Iron Fe | •35 | 3.86 | | Alumina Al <sub>2</sub> 0 <sub>3</sub> | .22 | 2.46 | | Sulphuric Acid SO <sub>4</sub> | .65 | 7.14 | | Chlorine Cl | 1.77 | 19.42 | | Total | $\frac{.54}{9.11}$ | $\frac{5.94}{100.00}$ | Analysis by A. E. Menke. Temperature of air, 70.88° F.; temperature of water, 63.5°F. Total solids in solution, 9.25 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 38). No. 126 # DOVE PARK SR ING-No. 3 $NE_{4}^{1}$ , Sec. 35, T. 6 S., R. 18 W., 4 miles east of Witherspoon, Mo. Pac. (see note under spring No. 127). Elev. 212 feet (approximately). #### No. 126-Continued ## Analysis of Water ## Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon 3.61 1.03 .51 1.97 .88 1.24 .26 9.50 | Per cent<br>of total<br>solids<br>38.00<br>10.84<br>5.37<br>20.74<br>9.26<br>13.05<br>2.74<br>100.00 | |---------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> | 3.61<br>.80<br>.15<br>1.10<br>.42<br>.26<br>.84<br>1.69<br>.62<br>9.49 | 38.01<br>8.43<br>1.59<br>11.59<br>4.43<br>2.75<br>8.86<br>17.80<br>6.54<br>100.00 | Analysis by A. E. Menke. Temperature of air, 40.68° F.; temperature of water, 63.05° F. Total solids in solution, 9.08 grains per U. S. gallon. No. 127 ### DOVE PARK-SPRING- No. 4 $NE_{4}^{1}$ , Sec. 35, T. 6 S., R. 18 W., 4 miles of Witherspoon, Mo. Pacific. (see note under spring No. 127). Elev. 212 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 39) ## Analysis of Water ## Hypothetical Combination | | Grains per | Per cent | |-----------------------|------------|----------| | Constituents | U.S. | of total | | | gallon | solids | | Silica SiO2 | 3.59 | 44.82 | | Chloride of Soda NaCl | .89 | 11.11 | ## No. 127-Analysis continued | Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> Alumina Al <sub>2</sub> O <sub>3</sub> Total | Grains per U.S. gallon .83 .74 1.84 .12 8.01 | Per cent<br>of total<br>solids<br>10.36<br>9.24<br>22.97<br>1.50<br>100.00 | |-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------| | Found. | | | | Silica SiO2 | 3.59<br>.94<br>.46<br>.35<br>.12<br>1.25<br>.75<br>.54<br>8.00 | 44.88<br>11.75<br>5.75<br>4.38<br>1.50<br>15.62<br>9.37<br>6.75 | Analysis by A. E. Menke. Temperature of air, 72.68° F.; temperature of water 62.15° F. Total solids in solution, 8.83 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 40) No. 128 #### FAIRCHILD SPRINGS These mineral springs are southwest of Hot Springs near Gulpha Creek. Near the Fairchild's Mineral Spring, the rock is a kind of quartz porphyry, among which a calc spar rock is also found. This mineral water was tested at the fountain-head, and the main constituents found to be Subcarbonate of Soda, Sulphate of Magnesia Chloride of Sodium (common salt), (Epsom salts), Sulphuret of Sodium, Bicarbonate of Lime, Trace of free sulphuretted hydrogen. This is a very strong alkaline, saline, sulphuretted water, the alkaline effect being the most prominent in its medical properties. The Upper Chalybeate Fairchild's Spring was found to contain pretty much the same ingredients, only less sulphates. There was not much iron. The Lower Chalybeate contains rather more iron than any of the springs, but still a very small proportion. (A. G. S. Second Rept.-Geological Reconnaissance-1860, p. 106) #### HOWARD COUNTY No. #### BAKER SPRINGS Sw., Sec. 13, T. 5 S., R. 30 W., Baker Springs. Drains into Baker Creek. Elev. 679 feet. (V. B. Goddard, Mena Chamber of Commerce.) No. ## BAKER'S SULPHUR SPRING SEd, Sec. 14, T. 5 S., R. 30 W., Baker Springs. This spring rises from the slate at the base of a ridge of quartzose sandstone. Elev. 679 feet. #### Analysis of Water Carbonate of alkali, which is probably in the state of Carbonate of soda, Chloride of sodium, A small quantity of free sulphuretted hydrogen, Traces of sulphate of soda and magnesia. (A. G. S. Ann. Rept., 1891, vol. 1, p. 101) No. ## MINERAL SPRINGS Sec. 19, T. 10 S., 27 W., 8 miles southwest of Nashville. The springs emerge from the base of a low gravel hill of Pleistocene age, on which the village is located. They are the southwest part of the village, on the north bank of a little brook that flows to the southeast and drains into Mine Creek. There is a small deposit of iron oxide around the mouth of these springs. Several springs at Nashville have a local reputation for medicinal properties. Three large springs flow approximately 20 gallons per minute. #### Analysis of Water #### Hypothetical Combination | | Grains per | Per cont | |--------------------------|------------|----------| | Constituents | U.S. | of total | | | gallon | solids | | Silica SiO2 | 1.91 | 51.27 | | Chloride of Soda NaCl | .29 | 7.79 | | Chlcride of Potash KCl | .01 | .27 | | Carbonate of Soda NagCO3 | 1.02 | 27.38 | ## No. 131-Analysis continued | Carbonate of Lime CaCO <sub>3</sub> Carbonate of Iron FeCO <sub>3</sub> Sulphate of Magnesia MgSO <sub>4</sub> Sulphuretted hydrogen H <sub>2</sub> S Total | Grains per U.S. gallon .47 .02 .005 trace 3.725 | Per cent of total solids 12.62 .54 .13 trace 100.00 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Iron Fe Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> Chlorine Cl | 1.91<br>.56<br>.006<br>.001<br>.19<br>.01<br>.004<br>.87<br>.18 | 51.19<br>15.01<br>.16<br>.02<br>5.09<br>.27<br>.11<br>23.32<br>4.72<br>100.00 | Water collected by assistant T. C. Hopkins, January 23, 1892. Analysis by A. E. Menke. Temperature of air, 43° F.; of water, 53° F. Total solid material in solution, 4.66 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 66) #### No. 132 ### GRAY'S SPRING Sec. 20, T. 5 S., R. 29 W. This spring is also known as Shurd's Sulphur Spring. The temperature of air is 52° F.; of water, 58° F. ### Analysis of Water The main characteristic constituents of this water are: Carbonate of soda. Chloride of sodium. Sulphuret of sodium. Traces of sulphate of soda. Traces of sulphate of magnesia. Its medical properties will be found to be analogous to those of Baker's Spring. (V. B. Goddard, Sec'y., Mena Chamber of Commerce) #### INDEPENDENCE COUNTY ### No. 254 133 #### STARNES NO. 1 SPRING NW<sup>1</sup>/<sub>4</sub>, Sec. 30, T. 12 N., R. 7 W., 6 miles southwest of Jamestown, and 13 miles southwest of Batesville. The springs are on the southwest side of a small tributary of Copperas Creek, which flows into Salado Creek and thence into White River. There are possibly twenty or more springs in this vicinity, only four of which form any marked deposit about their outlet, and from only two of which could clear water be obtained. The springs are so close to the brook that is waters flow over them during freshets and fill them up with sediment, unless they are boxed high. The springs flow from a sandy soil formed by the distintegration of a yellow, ferruginous sandstone of the Barren Coal Measures. The same rock forms the low hills on each side of the spring, and the higher hills on each side of Grassy Creek to the northeast. Elev. 750 feet (approximately). Analysis of Water Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |-------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | Silica SiO2 | .70<br>.30<br>.02<br>1.28<br>.72<br>1.52<br>.68<br>5.22 | 13.41<br>5.74<br>.38<br>24.52<br>13.78<br>29.12<br>12.94<br>100.00 | | Found. | | | | Silica SiO <sub>2</sub> | .70<br>.12<br>.36<br>.50<br>.73<br>.48<br>2.13<br>.18<br>5.20 | 13.46<br>2.31<br>6.92<br>9.62<br>14.04<br>9.23<br>40.96<br>3.46<br>100.00 | Water collected by assistant T. C. Hopkins, December 18, 1891. Analysis by A. E. Menke. Total solids in solution, 6130 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 84-85) ### INDEPENDENCE COUNTY ## No. 135 134 ## STARNES NO. 2 SPRING $NW_{4}^{1}$ , Sec. 30, T. 12 N., R. 7 W., 6 miles southwest of Jamestown, and 13 miles southwest of Batesville. Elev. 750 feet (approximately) ## Analysis of Water ### Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Soda Na2CO3 Carbonate of Magnesia MgCO3 Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Lime CaSO4 Total | Grains per U. S. gallon .35 .30 .01 1.45 1.92 1.43 .50 5.96 | Per cent of total solids 5.87 5.03 .17 24.31 32.25 23.98 8.39 100.00 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------| | Found. | | | | Silica SiO <sub>2</sub> | .35<br>.12<br>.41<br>.91<br>.69<br>.35<br>2.94<br>.18<br>5.95<br>1, p. 86) | 5.88<br>2.02<br>6.89<br>15.29<br>11.60<br>5.88<br>49.41<br>3.03 | #### No. 133 135 ### OLD ROBERT MORRIS SPRING Sec. 17, T. 13 N., R. 5 W., 1 mile west of north of Moore-field. This is the boldest and generally conceded to be the best spring in Independence County. Elev. 327 feet. (approximately). (U. S. G. S. W 102) ## No. k37 136 #### EARNHEART SPRING Sec. 29, T. 13 N., R. 7 W., near Batesville. Elev. 280 feet (approximately). (U. S. G. S. W 102) ### HUROH SPRING Sec. 16, T. 18 N., R. 10 W., Huron. Mr. S. Scott is the owner of 5 springs, located in secs. 9, 16, and 17. The waters are generally medium soft. One of the springs carries a greenish bronze glistening scum on the surface, and gives a reddish brown sediment on standing. The water of the latter has not been used except for stock. The springs are abundant all through the hilly country of the vicinity. The great majority of the inhabitants in fact depend on springs rather than on wells for their vater supply. (U. S. G. S. Water-Supply and Irrigation Paper No. 102. No. 19, p. 388) #### JACKSON COUNTY No. #### ROSS SPRING Sec. 22, T. 10 N., R. 4 W., Grandglaise. This spring is of considerable strength and issues from a bed of loose sand beneath the Tertiary Limestone and just above the level of the lowlands to the east. There is another spring at the same horizon, about half a mile south of Grandglaise station. Elev. 232 feet. (U. S. G. S. W 145, p. 113) No. #### GRANDGLAISE SPRING Sec. 27, T. 10 M., R. 4 W., $\frac{1}{M}$ mile south of Grandglaise Station. Mlev. 232 feet. (U. S. G. S. W 145) #### LITTLE RIVER COUNTY No. ## SALT SPEING Sec. 36, T. 9 S., R. 33 W., near Cerro Gordo. Elev. 400 feet (approximately). (U. S. G. S. P 46) No. ## BIG CHRINGS MET, Sec. 1, T. 12 S., R. 30 W., near Vinthrop. The spring is owned by W. A. Black. Elev. 314 feet (approximately). (U. S. G. S. F 46) #### INDEPENDENCE COUNTY No. ### WALDEN SPRING Sec. 13, T. 14 N., R. 4 W., near Hazelgrove. A number of other large springs are reported in the vicinity. Elev. 500 feet (approximately). (U. S. G. S. W 102) No. #### BIG SPRING Sec. 34, T. 14 N., R. 7 W., at James Hill half way between Batesville and Cushman. It flows from the side of a hill, is more than fifty feet wide, and is ten feet deep. The large volume of water discharged becomes Spring Creek. Formerly a mill was operated at the spring, but at present no use is made of the water. Elev. 300 feet (approximately) (Sonator J. Paul Ward, Batesville) No. ## FIRRELL CAVE SPRING Sec. 9, T. 14 N., R. 7 W., near Cushman. The water flows from a spring within a cave through a hole below entrance. The water is clear and cool. Elev. 734 feet (approximately). (Bryan Parks, Fort Smith) #### TZARD COUNTY No. #### BLOWING SPRING Sec. 2, T. 14 N., R. 8 W., near Cushman. Elev. 400 feet (approximately). (J. Reed Denison, Cushman, Arkansas) No. ### PRIM SPRING T. 15 N., R. 8 W., 5 miles southwest of Mt. Pleasant. Elev. 400 feet (approximately). (A. G. S. Cave File). No. ## HELDOURNE (WIDEHAR) SPRING Sec. 19, T. 16 N., R. 9 W., 5 miles southwest of Melbourne. The spring is owned by R. Harris. Elev. 800 feet (approximately) (Mrs. T. W. Gorham, Melbourne) ## KING'S SPRING Sec. 7, T. 12 S., R. 31 W., south of Winthrop. The spring is owned by the King-Rider Lumber Company. Elev. 350 feet (approximately). (U. S. G. S. P 46) No. $SE_2^1$ $NW_3^1$ , Sec. 2, T. 13 S., R. 28 W., near Coleboro. Elev. 300 feet (approximately). (U. S. G. S. P 46) #### LOGAN COUNTY No. ## MAGAZINE SPRING NET, Sec. 19, T. 6 N., R. 26 W., one mile east of Magazine. The water is very clear and has a discharge of one gallon in two minutes. It comes from a black pyritiferous shale of the Coal Measures twelve feet beneath the surface of the ground. The reaction is neutral; lead paper gave no reaction for sulphuretted hydrogen, though bubbles of gas which may be ignited rise in the pipe. Heavy rains do not appear to alter the discharge or the clearness of the water. This spring was once locally known as Ellington's gas well. Elev. 456 feet (approximately). # Analysis of Water Hypothetical Combination | Grains per U.S. gallon | Per cent<br>of total<br>solids | |------------------------|----------------------------------------------------------------| | 1.96 | 6.16 | | 3.25 | 10.21 | | .19 | .60 | | 20.94 | 65.74 | | .01 | .03 | | .70 | 2.20 | | •29 | 0.90 | | •09 | •28 | | | | | •05 | .16 | | | 13.72 | | 31.85 | 100.00 | | 9.59<br>41.44 | | | | U.S. gallon 1.96 3.25 .19 20.94 .01 .70 .29 .09 .05 4.37 31.85 | ## No. 149-Analysis continued | | | Per cent of total solids | |--------------------------------|-------------------------------------|------------------------------------| | Found | | | | Silica SiO <sub>2</sub> | 1.96<br>10.38<br>.23<br>.004<br>.28 | 4.73<br>25.03<br>.56<br>.01<br>.68 | | Iron Fe Aluminum Al | .03<br>.01 | .07 | | Sulphuric Acid SO <sub>4</sub> | .26<br>21.86 | .63<br>52.74 | | Chlorine Cl | 2.06<br>sli't trace | • | | Organic matter | $\frac{4.37}{41.44}$ | 10.55<br>100.00 | Water for analysis collected by assistant J. P. Smith, June 3, 1889. Temperature of the air, 62.78° F.; of water, 51.34° F. Total solid material in solution, 31.13 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 63-64). #### No. k50 151 #### GRAY'S SPRING Sec. 20, T. 5 N., R. 29 W., near Dial. Its medical properties will be found to be analogous to those of Baker's Spring. Elev. 500 feet (approximately). ## Analysis of Water Carbonate of Soda. Sulphuret of Sodium. Chloride of Sodium. Traces of Sulphate of Soda. Traces of Sulphate of Magnesia. Temperature 58° F. Temperature of the air, 52° F. (A. G. S. Ann. Rept., 1891, vol. 1, p. 108) ## No. 152 152 ## NATIONAL SPRING $NW_{4}^{\frac{1}{4}}$ , Sec. 8, T. 7 N., R. 27 W. This spring is about 100 yards south of the Iron Spring. The flow of the spring is westward. The water comes from Carboniferous shales that contain much iron pyrites (FeSO<sub>2</sub>), the sulphur of which goes to form the large per cent of sulphuric acid (SO<sub>4</sub>). There is no odor of sulphuretted hydrogen and apparently no gas escaping. Reaction on litmus paper is neutral. The spring is seven feet deep, the water is clear and forms no sediment of iron. Elev. 750 feet (approximately) Analysis of Water Hypothetical Combination | Constituents Silica SiO <sub>2</sub> | Grains per U.S. gallon 1.40 | of total solids | |-----------------------------------------------------|-----------------------------|------------------| | Chloride of Soda NaCl Chloride of Potash KCl | 11.79<br>.56 | 8.16 | | Carbonate of Magnesia MgCO <sub>3</sub> | 18.89 | .39<br>13.07 | | Carbonate of Lime CaCO3 | 31.92 | 22.09 | | Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> | 33.01 | 22.84 | | Sulphate of Magnesia MgSO4 | 46.55 | 32.22 | | Sulphate of Iron FeSO, | .15 | .11 | | Sulphate of Alumina $(\bar{A}l_2(SO_4)_3)$<br>Total | $\frac{.22}{144.49}$ | .15<br>100.00 | | Found | | | | Silica SiO <sub>2</sub> | 1.40 | •95 | | Sodium Na | 15.35 | 10.44 | | Potassium K | .29 | .20 | | Magnesium Mg | 14.70 | 10.00 | | Lithium Li | 12.77<br>sli't trace | 8.69 sli't trace | | Iron Fe | .06 | .04 | | Aluminum Al | .03 | .02 | | Sulphuric Acid SO <sub>4</sub> | 59.84 | 40.69 | | Carbonic Acid CO3 | 32.64 | 23.94 | | | 7.41 | 5.03 | | Total | 144.49 | 100.00 | Water collected by assistant J. P. Smith, June 3, 1889. Temperature of air 78.53° F.; of water, 61.43° F. Total solid material in solution, 151.23 grains per U. S. gallon. Carbonic acid (CO<sub>2</sub>), free and for bicarbonates, 2.56 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 75) #### No. xxx 153 ## SANDHILL SPRING Sec. 16, T. 4 N., R. 9 W., near Cabot and Austin. The number of springs within the lowland area is so limited that for all practical purposes they might be left out of consideration as water producers. There are but three localities within the lowlands where springs occur, viz, at Newark, Grandglaise, and the Sandhill area east of the towns of Austin and Cabot. The limited number of springs is due to the usually level surface of the region, the horizontal position of the beds, and the shallow stream valleys. The springs at the localities mentioned issue from erosion remnants, the edges of whose horizontal beds outcrop above the adjacent areas. The town of Newark is situated upon a heavy deposit of gravel, probably of post-Tertiary age. This gravel is an excellent source of water, as it rests directly upon the Moorefield shale, which, because of its impervious nature, prevents the water from sinking. In the eastern part of the town, at the base of the gravel and the top of the shale, there are several springs. East of the towns of Austin and Cabot are several springs which issue from the slopes of the ridges on the east, north, and west sides. The Sandhill area is underlain by a bed of clay near the base, which, being impervious, causes the water to flow out on the hillsides as springs. Elev. 300 feet (approximately). (U. S. Geological Survey Water-Supply Paper No. 145, p. 113) ### No. kat 154 #### CAMP GROUND SPRING NW2, Sec. 22, T. 4 N., R. 9 W., east of Austin and Cabot. Sandhill area is underlain by a bed of clay near the base, this being impervious causes water to flow out of the base, resulting in a number of springs in this vicinity. The same formation as given in No.153 applies to this spring. Elev. 300 feet (approximately). (U. S. Geological Survey Water-Supply Paper No. 145) ## LONOKE COUNTY No. ## QUAPAW MINERAL SPRINGS $NE_{4}^{\frac{1}{4}}$ , Sec. 34, T. 4 N., R. 10 W., near Cabot. This water is marketed by Quapaw Mineral Springs Water Company, $112\frac{1}{2}$ E. 7th Street, Little Rock, Arkansas. Elev. 250 feet. ## Analysis of Water | | Parts<br>per<br>million | Grains<br>per<br>gallon | |-----------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | Silica Oxide | 20.0<br>0.4<br>0.6<br>38.0<br>11.0<br>20.0<br>2.4<br>4.1<br>216.0<br>4.0<br>1.0<br>1.77.0 | 1.16<br>0.02<br>0.03<br>2.20<br>0.63<br>1.16<br>0.13<br>0.23<br>12.52<br>0.23<br>0.05<br>10.26 | | Hypothetical Combination of | Above | | | Silical Oxide | 20.0<br>0.7<br>1.3<br>5.8<br>147.6<br>66.7<br>6.1<br>6.5 | 1.16<br>0.04<br>0.07<br>0.33<br>8.56<br>3.86<br>0.35<br>0.37 | | Sodium Carbonate | 63.7 | 3.70 | (Manglesdorf Laboratory, Little Rock) No. ## MOUNTAIN SPRING Sec. 33, T. 5 N., R. 10 W., 5 miles northwest of Austin northwest corner of Lonoke County. There is a considerable #### **156** No. 285-Continued. deposit of iron in and around the spring. The water flows in a small stream from a crevice near the base of a ledge of yellow ferruginous sandstone of the Barren Coal Measures. The ridge on which the spring is situated is mainly composed of sandstone, a small outcrop of black shale showing near the top of the hill and larger outcrops of shale along the road leading from the tase of the hill east towards Austin. The spring is about 60 feet below the top of the hill, 40 feet above the base of the hill, and 180 feet above Austin (barometric measurement). Elev. 200 feet (approximately). Analysis of Water | Constituents Silica SiO2 | Tains per U.S. gallon .46 .23 .92 .88 1.94 .50 4.93 | of total | |---------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------| | Found | | | | Silica SiO2 | .46<br>.09<br>.26<br>.50<br>.94<br>.35<br>2.19<br>.14<br>4.93 | 9.33<br>1.83<br>5.27<br>10.14<br>19.07<br>7.10<br>44.42<br>2.84<br>100.00 | Water collected by assistant T. C. Hopkins. Analysis by A. E. Fenke. Temperature of air, 44.78° F.; temperature of water, 59° F. Total solids in solution, 4.16 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 69) ## No. 188 157 ## PHELON'S SPRING Sec. 10, T. 13 N., 25 W., at Pettigrew. Mr. Phelon owns a number of other springs located near this one, no two of which are alike. Several of them are reported to possess medicinal properties. One of the springs deposits some iron. Elev. 2000 feet (approximately). (U. S. G. S. W 102) ## No. XXXX 158 ## DENNY'S SPRING (Horsethief Cave) Sec. 4, T. 17 N., R. 25 W., 4 miles northeast of Alabam. This spring is large and emerges about 200 feet from entrance of cave. Water is ice cold. Elev. 1300 feet (approximately). (Leonard Kendall, Fact-Finding Tribunal) ## No. xxxx 159 ## TOWN SPRING $SW_{4}^{1}$ SE, Sec. 34, T. 17 N., R. 26 W., near Huntsville. The water is marketed by the City Water Company, Huntsville, and is the water supply for the City of Huntsville. Elev. 1453 feet. (Arlis Coger, Huntsville) #### No. 150 160 #### WITHROW SPRING Sec. 32, 18 N., 26 W., four miles north of Huntsville on Highway Not 23. One of the largest springs in the county, and one of its beauty spots. It is one-half mile north of War Eagle River and is a favorite camping place. Elev. 1250 feet. (Arkansas Ozarks, p. 50) #### MARION COUNTY #### No. 160x 161 #### DE SOTO SPRING $NW_4^1$ , Sec. 20, T. 17 N., R. 15 W., near Sylva Post Office. The spring emerges from the limestone at the base of the #### 161 #### No. 130-Continued Lower Carboniferous rocks. Other springs, some of them larger, occur along the ravine at a lower level. A quarter of a mile below the water from all the springs flows over a percendicular ledge of sandstone, in a stream several feet in width, forming a cataract thirty feet or more in height. Elev. 449 feet (approximately) (A. G. S. Ann. Rept., 1891, vol. 1, p. 106) ## No. 162 ## INTERMITTENT SERING Sec. 3, T. 17 N., R. 17 W., at Bruno. No regularity has been observed in the periods of flow. A bold stream flows from the spring for several hours, stops for a few hours or a half a day, and then suddenly begins again. In wet weather it flows continuously. It is in rocks of Lower Silurian age. Elev. 927 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 108) #### No. kozxx163 ## SALTPETER CAVE SPRING $NW_4^1$ , Sec. 22, T. 18 N., R. 18 W., 4 miles northeast of Everton. Elev. 950 feet (approximately). (T. S. Lancaster, Everton, Arkansas.) ### No. xk 164 #### STONEWALL SPRING T. 19 N., R. 15 W. This spring has a local reputation as a health resort. The water flows from rocks of Silurian age. Elev. 550 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 115) #### No. xk6x 165 #### JACKSON SERING T. 19 N., R. 16 W., 3 miles northwest of Yellville. This spring has a local reputation as a health resort. The water flows from rocks of Silurian age. Elev. 1100 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 108) ## COWAN'S SPRING Total dissolved solids . . SW<sup>1</sup>/<sub>4</sub> NE<sup>1</sup>/<sub>4</sub>, Sec. 26, T. 18 N., R. 16 W., Town of Cowan. This spring is situated on the north side of the hill forming the south wall of a break, 50 feet south of county road. The sand formation is broken, forming a spur west of the spring. Elev. 850 feet (approximately). (Chas. LeVasseur, January 1, 1929). | Analy | sis of wate | )r | | |--------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PROPERTIES. Primary Salinity Secondary Salinity Tertiary Salinity (acidity Primary alkalinity Secondary alkalinity | • • • • • | Per Cent. 2.00 0.00 0.00 3.00 95.00 | | | REACTING VALUES | Per Cent | Mg. per | liter | | Groups | | | Topical Programs Land (Co.) - College Co. (Co.) - College Co.) - College Colle | | Alkalies | 2.50 | 0.27 | METALS | | Earths | 47.59 | 5.28 | Project Drawn and the Administration of Confession Conf | | Hydrogen | 0.00 | 0.00 | Lead - none | | Strong acids | 1.00 | 0.11 | Copper - trace | | Weak acids | 48.91 | 5.45 | Zinc - trace | | | 100.00 | 11.11 | | | | | | _ | | RADICIES | Per Cent | Mg. per | <u>liter</u> | | Sodium | • | | | | Potassium | 2.50 | 0.27 | Chemical Character | | Calcium | 29.40 | 3.26 | • | | Magnesium | 18.19 | 2.02 | Calcium | | Hydrogen | 0.00 | 0.00 | Magnesium | | Sulphate | 0.00 | 0.00 | Bicarbonate. | | Chloride | 1.00 | 0.00 | | | Bicarbonate | 48.91 | 5.45 | | | Carbonate | 0.00 | 0.00 | week. Wike- | | Concentration values | 100.00 | 11.11 | State State State | | BASE ANALYSIS.<br>Radicals | Parts | per milli | lon | | Sodium (Na) | | | | | Potassium (K) | 6.3 | 52 | | | Calcium (Ca) | 65.2 | | | | Magnesium (Mg) | 24.5 | | | | Sulphate $(SO_4)$ | 0.0 | 00 | | | Chloride (C1) | 3.9 | | | | Bicarbonate (HCO3 | | | | | Carbonate (CO3) | 0.0 | | | | Free Carbon dioxide (CO2) | 5.3 | | | | Motol discolard colida | 175 1 | | - | No. 366x 167 #### CHEEK'S SPRING. SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is situated near the surface-some six feet below the top of a sand broken boulders formation. This spring issues from a flinty lime stratum 250 feet of the Cheek's house, 200 feet north of the east Barren's branch. This spring is on the south slope of the hill forming a divide between the branch on the Horner property and the east Barren's branch. Elev. 850 feet (approximately). (Chas. LeVasseur, January 1, 1929). | Properties | Per Cent | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------| | Primary salinity | 2.40 | NITTO A T O | | Secondary salinity | 0.00 | METALS | | Tertiary salinity (Acidity) | - ' | ead - none | | Primary alkalinity | | pper- trace | | Secondary " | | on - 0.0002 | | | 100.00 Zi | nc - trace | | 73 | a de la late | | | | er Cent Mg | per liter | | Groups | 7 00 | 0.75 | | | 1.63 | 0.16 | | | 7.65 | 4.76 | | The state of s | 0.00 | 0.00 | | | 1.20 | 0.12 | | | 9.52 | 4.95 | | Concentration Values 10 | 0.00 | 9,99 | | The same of the same | A. CI. I BE. | | | | er Cent Mg | per liter | | Sodium | 7 00 | 0.36 | | | 1.63 | 0.16 | | · · · · · · · · · · · · · · · · · · · | 8.71 | 2.87 | | · • • • • • • • • • • • • • • • • • • • | 8.49 | 1.89 | | | 0.00 | 0.00 | | | 0.00 | 0.00 | | | 1.20 | 0.12 | | | 6.10 | 4.61 | | | 3.42 | 0.34 | | Concentration Values 10 | 0.00 | 9.99 | | DAOTI AND TITOTO | T) 4 | | | BASE ANALYSIS | Parts per | million | | Radicles | 0.00 | | | Sodium (Na) | . 0.00 | Obamiaal Obamaatan | | Potassium (K) | . 3.80 | Chemical Character. | | Calcium (Ca) | 54.71 | 0-7-4 | | Magnesium (Mg) | . 21.16 | Calcium | | Sulphate (\$04) | . 0.00 | Magnesium | | Chloride (C1) | 4.21 | Bicarbonate | | Bicarbonate ( $HCO_3$ ) | . 264.03 | | | Carbonate (CO3) | 9.16 | | | Free Carbonate dioxide (CO2) . | . 0.10 | | | Total dissolved solids | 357.17 | | | A CONTRACTOR OF THE PROPERTY O | | | ## HORNER'S UPPER SPRING Total dissolved solids SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is situated on the north side of a break, about 100 feet south of the county road. The water came out of a heavy ledge of sand stone. This ledge is well exposed between the spring and the Horner house. Elev. 1000 feet (approximately). (Chas. LeVasseur, January 1, 1929). | PROPERTIES Primary salinity | Per Cent<br>1.86<br>0.00<br>0.00<br>3.28<br>94.86<br>100.00 | MET. Lead - Copper - Zinc - | none | |---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------| | REACTING VALUE Groups Alkalies | Per Cent 2.57 47.30 0.00 0.93 49.20 100.00 | Mg per 11 0.28 5.25 0.00 0.10 5.46 11.09 | Chemical Character Calcium Magnesium Bicarbonate. | | RADICLES Sodium Potassium Calcium Magnesium Hydrogen Sulphate Chloride Bicarbonate Carbonate Concentration Values | 2.57<br>29.30<br>18.00<br>0.00<br>0.00<br>0.93<br>49.20<br>0.00 | Mg per li 0.28 3.25 2.00 0.00 0.00 0.10 5.46 0.00 11.09 | ter | | BASE ANALYSIS Radicles Sodium (Na). Potassium (K) Calcium (Ca) Magnesium (Mg) Sulphate (SO4) (C1) Bicarbonate (HCO3) Carbonate (CO3) Free carbon dioxide(CO2) | 6. 65. 24. 0. 332. 0. | .00<br>.25 | | #### MARION COUNTY #### No. 142 169 ## HORNER'S LOWER SPRING SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. Water from Horner's lower spring. This spring is situated on the north side of the ridge, at a contact line of a break and lime bar, about 300 feet south of the county road. The contact line forms a draw, having a general southeasterly direction. This spring issues from a lime ledge and the channel of said spring has formed a small cave. This spring is on a different formation than the upper spring which is at an elevation 300 feet above. Elev. 800 feet (approximately). (Chas. Levasseur, January 1, 1929). | PROPERTIES Primary Salinity | Per Cent 2.38 0.00 7) 0.00 2.84 94.78 100.00 | | - none<br>- none<br>- 0.0001 | |-----------------------------|----------------------------------------------|-----------|--------------------------------------------------------| | REACTING VALUES | Per Cent | Mg. per 1 | iter | | Groups | | | washa tali Yafa gasa saka saka saka saka saka saka sak | | Alkalies | 2.61 | 0.26 | | | Earth | 47.40 | 4.74 | | | Hydrogen | 0.00 | 0.00 | | | Strong acids | 1.19 | 0.12 | | | Weak acids | 48.80 | 4.88 | | | Concentrating values | 100.00 | 10.00 | nationalise - Make Apparatational | | RADICLES<br>Sodium | Per Cent | Mg. per 1 | iter | | Potassium | 2.61 | 0.26 | | | Calcium | 28.90 | 2.89 | | | Magnesium | 18.50 | 1.85 | | | Hydrogen | 0.00 | 0.00 | | | Sulphate | 0.00 | 0.00 | | | Chloride | 1.19 | 0.12 | | | Bicarbonate | 48.80 | 4.88 | • | | Carbonate | 0.00 | 0.00 | | | Concentration values | 100,00 | 10.00 | | | BASE ANALYSIS Radicles | Parts | per milli | <u>.on</u> | | Sodium (Na) | 0. | 00 | | | Potassium (K) | | 96 | Chemical Character | | Calcium (Ca) | | | | | Magnesium (Mg) | 22. | 65 | Calcium | | Sulphate (SO <sub>4</sub> | | 00 | Magnesium | | Chloride (C1) | | 20 | Bicarbonate. | Analysis of water from Horner's lower spring. | | Parts per million | |------------------------|--------------------| | Bicarbonate | $(HCO_3)$ . 298.80 | | Carbonate | $(00_3)$ . $0.00$ | | Carbonate | ((0)) 1.30 | | Total dissolved solids | 388.96 | # No. 169x 170 ## HAMLET NORTHEAST SPRING Total dissolved solids SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is situated on the south side of hill in the line of a break, about 150 feet due west from Hamlet house and 100 feet north of East Barren Branch. This spring comes out from a lime stratum, which contains streaks of calcium along the planes of the formation. Elev. 850 feet (approximately). (Chas. LeVasseur, January 1, 1929). | PROPERTIES. Per Cent Primary salinity 2.00 Secondary salinity 0.00 Tertiary salinity (Acidity) 0.00 Primary alkalinity 1.86 Secondary alkalinity 96.14 100.00 | METALS Lead - none Copper - trace Iron - trace Zinc - trace | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------| | REACTING VALUES. Groups Alkalies | Mg. per litre 0.17 2.20 0.00 0.08 4.18 8.63 | | | RADICLES. Sodium Potassium 1.93 Calcium 29.03 Magnesium 19.29 Hydrogen 0.00 Sulphate 0.00 Chloride 1.00 Bicarbonate 44.94 Carbonate 3.81 Concentration Values 100.00 | Mg. per litre 0.17 2.52 1.68 | <u>ter</u> | | BASE ANALYSIS Radicles Sodium (Na) Potassium (K) Calcium (Cā) Magnesium (mg) Sulphate (SO4) Chloride (C1) Bicarbonate (HCO3) Carbonate (CO3) Free Carbon dioxide (COn) | Parts per million 3.84 50.80 20.25 0.00 3.00 241.33 10.12 0.00 | | ### MARION COUNTY # No. XXQ 171 ## HAMLET NORTHWEST SPRING SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is situated from 50 feet west of the other Hamlet spring on the same formation, but which at this place is more broken than that of No. 5. Elev. 850 feet (approximately). (Chas. Levasseur, January 1, 1929). | PROPERTIES. | Per Cent | men an | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Primary salinity | 1.92 | | | Secondary salinity | 0.00 | | | Tertiary salinity (acidity) | 0.00 | METALS | | Primary alkalinity | 1.72 | | | Secondary " | 96.36 | Lead - none | | Commission of the state | 100.00 | Copper- trace | | | | Zinc - 0.00002 | | | | | | REACTING VALUES | Per Cent | Mg. per litre | | Groups | | | | Alkalies | 1.82 | 0.16 | | Earth | 48.16 | 4.18 | | Hydrogen | 0.00 | 0.00 | | Strong Acids | . 0.96 | 0.08 | | Weak Acids | 49.06 | 4.26 | | Concentration Values | 100.00 | 8.68 | | | | | | RADICLES | Per Cent | Mg. per litre. | | Sodium | | | | Potassium | 1.82 | 0.16 | | Calcium | 29.16 | 2.5 <b>3</b> | | Magnesium | 19.00 | 1.65 | | Hydrogen | 0.00 | 0.00 | | Sulphate | 0.00 | 0.00 | | Chloride | 0.96 | 0.08 | | Bicarbonate | 45.5 <b>4</b> | 3.96 | | Carbonate | 3 <b>.</b> 52 | 0.30 | | Concentration Values | 100.00 | 8 <b>.68</b> | | | | | | BASE ANALYSIS. | Parts per | million | | Radicals | | | | Sodium (Na) | • • • • | Chemical Character | | Potassium $\cdot$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ (K) | 3.70 | | | Calcium (Ca) | 50.89 | Calcium | | Magnesium $(Ng)$ . | 20.18 | Magnesium | | Sulphate $\dots$ (SO4) $\dots$ | 0.00 | Picarbonate. | | Chloride (C1) | 2.81 | | | Picarbonate (HCO3) | 245.91 | | | Carbonate (003) | 9,50 | | | Free Carbon dioxide (CO2) | 0.00 | | | Total dissolved solids | 332.99 | ATTENDED TO THE PARTY OF PA | | | | | ## STERLING WEASE SPRING SW part, T. 18 N., R. 15 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is located at the head of a depression running east towards Clabber Creek in a mass of broken formation, in a brake - snad, flint and lime boulders, 150 north of Sterling Weast house. Elev. 850 feet (approximately). (Chas. Levasseur, January 1, 1929). | | | and the second s | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PROPERTIES | Per Cent | BOTTOM A TO CL | | Primary salinity | 1.86 | METALS | | Secondary salinity | 0.00 | | | Tertiary salinity | 0.00 | Lead - none | | Primary alkalinity | 1.84<br>96.30 | | | Secondary alkalinity | | * T | | deligation to the second secon | 100.00 | Zinc - trace | | REACTING VALUES. | Per Cent | Mg. per litre | | Groups | 101 00110 | Mas Dol 11010 | | Alkalies | 1.85 | 0.16 | | Earth | 48.13 | 4.22 | | Hydrogen | 0.00 | 0.00 | | Strong Acids | 0.93 | 0.08 | | Weak Acids | 49.09 | 4.29 | | Concentration Values | 100.00 | 8.75 | | | | alle alle alle alle alle alle alle alle | | RADICLES | Per Cent | Mg. per litre | | Sodium | | | | Potassium | 1.85 | 0.16 | | Calcium | 29.11 | 2.55 | | Magnesium | 19.02 | 1.67 | | Hydrogen | 0.00 | 0.00 | | Sulphate | 0.00 | 0,00 | | Chloride | 0.93 | 0.08 | | Bicarbonate | 45.59 | 3 <b>.</b> 99 | | Carbonate | 3.50 | 0.30 | | Concentration Values | 100.00 | 8.75 | | | | | | BASE ANALYSIS | Parts per | million | | Radicles | A12 | · | | Sodium (Na) | | ATTENDACT OF A CATALLY A COMMUNICATION | | Potassium (K) | 3.70 | CHEMICAL CHARACTER | | Calcium (Ca) | 49.50 | | | Magnesium (Mg) | 20.16 | | | Sulphate $\dots$ (SO <sub>4</sub> ) $\dots$ | 0.00 | Calcium | | Chloride (C1) | 2.86 | Magnesium | | Bicarbonate (HCO3) . | 244.82 | Bicarbonate. | | Carbonate $\cdot \cdot \cdot \cdot (CO_3)$ | 9.31 | | | Free carbon dioxide (COn) | 1.00 | Talahan salahan dan dan dan dan dan dan dan dan dan d | | Total dissolved solids | 331.35 | | ## No. 172 173 ## S. BRYANT SPRING SE part, T. 18 N., R. 16 W., Cowan Barrens north of Rush and Clabber Creeks. This spring is situated near the surface in sand ledge which is outcropping on the west of the spring. This spring is situated at the head of a small ravine running to the east, 300 feet west of Bryant's house. Elev. 850 feet (approximately). (Chas. Levasseur, January 1, 1929). | PROPERTIES | Per Cent | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------| | Primary salinity | 1.84 | · | | Secondary salinity | 0.00 | METALS | | Tertiary salinity (acidity) | 0.00 | <del>edition about an institutional a</del> | | Primary alkalinity | 1.60 | Lead - none | | Secondary " | 96.56 | Copper - none | | менняр мененням карымногом Монтро насочения насочения поста и простительной поста поста советствия поста поста | 100.00 | Zinc - none | | And the second section of the contract points and the contract of a processor to a days and an application of processor to the contract of | The superior and su | | | REACTING VALUES | Per Cent | Mg. per litre | | Groups | | | | Alkalies | 1.72 | 0.17 | | Earth, | 47.38 | 4.75 | | Hydrogen | 0.00 | 0.00 | | Strong acids | 0.92 | 0.09 | | Weak Acids | 49.98 | 4.99 | | Concentration Values | 100.00 | 10.00 | | | | | | RADICLES | Per Cent | Mg. per litre | | Sodium | | | | Potassium | 1.72 | 0.17 | | Calcium | 28.12 | 2.81 | | Magnesium | 19.26 | 1.94 | | Hydrogen | 0.00 | 0.00 | | Sulphate | 0.00 | 0.00 | | Chloride | 0.92 | 0.09 | | Bicarbonate | 46.85 | 4.68 | | Carbonate | 3.13 | 0.31 | | Concentration Value | 100.00 | 10.00 | | | | | | BASE ANALYSIS. | Par | ts per million | | Radicles | | | | Sodium (Na) | | Chemical Character | | Potassium (K) | 4.01 | | | Calcium (Ca) | 53 <b>.43</b> | Calcium | | Magnesium $\cdot$ $\cdot$ (Mg) $\cdot$ $\cdot$ | 21.57 | Magnesium | | Sulphate $\dots$ (SO) $\dots$ | 0.00 | Bicarbonate. | | Chloride (Cl) | 3.22 | | | | 267.04 | | | Carbonate $\cdot \cdot \cdot \cdot (CO_3)$ | 8.45 | | | Free Carbon dioxide (CO2) . | 0.13 | | | Total dissolved solids | 357.85 | | ## TUTT & EVERETTE SPRING NET, Sec. 16, T. 19 N., R. 17 W., 4 miles north and east of Pyatt. The spring is owned by Ernest Young, Pyatt, Arkansas. Elev. 1100 feet (approximately). (Jim Casey, Pyatt, Arkansas) 10. #### KINGDON SPRINGS Sec. 35, T. 20 M., R. 16 W., 8 miles north of Yellville. Elev. 750 feet (approximately). (Helath & Pleasure Resorts, Arkansas Ozarks) No. ## CREAVER SPRING NW, Sec. 35, T. 20 N., R. 17 W., near Dodd City. At this spring the marble measures 50 feet in thickness, is red and variegated in color and crinoidal in places. The overlying chert contains some intercalary gray limestone. Elev. 1100 feet (approximately). (A. G. S. 1890, vol. IV, p. 523) No. ## MADBLE FALLS SPRING Center of Sec. 27, T. 20 N., R. 17 N., on A. L. Dirst's place. At the head of another tributary of West Music Creek, the marble is well exposed in a bed 50 feet thick, the top of which is 190 feet below Mr. Dirst's house, a mile from the spring. The marble outcrops in a bold bluff, from beneath which the spring issues; in this bluff are several varieties of marble, the most characteristic ones being red, pink, and pink and light gray mottled. The exact contact of the marble with the underlying rocks could not be seen at the spring, but the interval between the St. Joe bed and the underlying gray limestone is only four inches; the limestone is ton feet thick and is underlain by white sandstone and blue limestone. The marble outcrops at intervals west and north of Marble Falls Spring, on the other branches of Music Creek, in sections 27, 22, and 15 (20 M., 17 W.), yet in many places it is so much decayed as to be concealed beneath the broken chert. Elev. 1100 feet (approximately). (A. G. S. 1890, vol. IV, p. 324) ### CRAHK'S SPRING SWY SWY, Sec. 18, T. 16 S., R. 27 W., at Crank. The spring is owned by J. W. Grank. This is a large magnesia spring of Sabine formation. Elev. 200 fest (approximately). (U. S. G. S. P 46) #### MONTGOLLRY COUNTY No. ### BLACK SPRING Sec. 30, T. 3 S., R. 25 W., northern edge of the town of Black Spring. In the northern edge, the road crosses a little run in which the black shales are imperfectly exposed, the alluvial deposits of the ancient Caddo having obscured the rock formations. The shales seem to lie near the base of the quartz-bearing division. The water which flows from these shales is agreeable to the taste, slightly charged with sulphur. Elev. 717 feet. (A. G. S. Ann. Rept., 1891, vol. 1, p. 102) No. #### COM SPRING Sec. 30, T. 3 S., R. 25 W., at Black Spring. This spring is on State Highway No. 8. The Black Springs Lumber Company has set aside 40 acres and the spring as a memorial to Levi J. Witherspoon, former president of the company. Elev. 725 feet (approximately). (Arkansas Gazette, 5-13-34. Arkansas Geological Clipping Book) No. #### WITHERSPOON SPRINGS SWb, Sec. 22, T. 3 S., R. 27 W. The springs are owned by Mrs. I. J. Witherspoon, Hena, and were formerly the old Box Springs. Elev. 1500 feet (approximately). (V. B. Goddard, Sec'y., Hena Chamber of Commerce) #### No. XXXX XXX XXX 182 #### NORTH SPRING Sec. 13, T. 4 S., R. 25 W., in gap through Caddo Mountain, Caddo Gap. The hot springs at Caddo Gap were discovered in February, 1908, by J. M. Davis, of that place. The hot water has its outlet in the bed of Caddo River, in the gap where this stream cuts through Caddo Mountain, and this peculiar location prevented the springs from being discovered earlier. The water rises between the vertical beds of the uppermost division of the Arkansas novaculite. Cement enclosures have been constructed ground two points of issue, 22 feet apart, on the west side of the river, and the springs issuing through these enclosures are here called North Spring and South Spring. Much hot water still issues from the bed of the river. The surface of the North Spring stands about 15 inches and that of the South Spring about 10 inches above the river at average stage. The temperatures of the springs were determined on July 2, 1910, by Mr. Purdue, who found the North Spring to have a temperature of 95° F. and the South Spring 96.5° F. Mr. Miser determined the temperatures at 6 p.m. May 8, 1916, at the places where the hot waters enter the concrete basins, and found them to be 94° F. for the North Spring and 96.8° F. for the South Spring. The flow of each spring was calculated from a rough determination to be 5 gallons a minute. Elev. 619 feet #### Analysis of Water | | South | North | |------------------------------------------------------------|-----------|---------| | | Spring | Spring | | Silica SiO <sub>2</sub> | 15.600 | 18.700 | | Ferric Oxide and Alumina Fe203+Al203 | 7.000 | 7.200 | | Calcium Ca | 38.876 | 41.680 | | Magnesium Mg | 2.166 | 4.235 | | Sodium Na | 7.526 | 3.349 | | Potassium K | .000 | .000 | | Carbonic Acid radicle CO3 | 68.265 | 67.085 | | Sulphuric Acid radicle SO <sub>4</sub> | 1.419 | 2.313 | | Chlorine Cl | 4.848 | 7.138 | | | 145.700 | 151.700 | | Carbon Dioxide (free CO <sub>2</sub> ) | 20.000 | 16.000 | | Analysis given in parts per million. (U letin 808, p. 187) | . S. G. S | . Bul- | ### No. xkiking kar 185 #### SOUTH SPRING Sec. 13, T. 4 S., R. 25 W., in gap through Caddo Mountain, Caddo Gap. (See note and analysis--No. 171. Elev. 619 feet. (U. S. G. S. Bulletin 808, p. 187) # No. 175175x 184 # HOT SPRING Sec. 23-26, T. 4 S., R. 25 W., 2 miles southwest of Caddo Gap. This spring is reported by Mr. W. B. Barton. Mr. Barton said that the analysis furnished by him of the hot water contained some cold surface water that was entering the spring. W. F. Manglesdorf, analyst. Elev. 620 feet. ### Analysis of Water | | Parts | |-------------------------------|---------| | | per | | | million | | Silica SO2 | 15.4 | | Iron Fe | 1.2 | | Aluminum Al | •7 | | Calcium Ca | 39.8 | | Magnesium Mg | 2.3 | | Potassium K | 1.3 | | Lithium Li | •6 | | Sodium Na | 9.1 | | Carbonic Acid radicle CO3 | 69.0 | | Sulphuric Acid radicle So4 | 8.3 | | Chlorine Cl | 8.0 | | | 155.7 | | (U S. G S Bulletin 808 n 188) | | #### (U. S. G. S. Bulletin 808, p. 188) ### No.x176 PROX 183 185 #### WARM SPRING Sec. 17, T. 4 S., R. 27 W., Slatington, on Little Missouri River, $6\frac{1}{2}$ miles southeast of Big Fork Post Office. The water issues from a crevice between two massive, steeply dipping layers of novaculite in the uppermost division of the Arkansas novaculite. The flow is sufficient to fill a 1-inch pipe leading from the spring. The water contains in solution much iron, which is deposited as a brown coating #### MONTGOMERY COUNTY No. in the wooden troughs carrying the water down the mountain side and on the rocks over which the water flows. Temperature of water, 74° F. Elev. 1250 feet. (U. S. G. S. Bulletin 808, p. 188) No. #### MATTOCK SPRING This spring issues from the slate in a ravine below Mattock's house, not far from limestone, is a strong alkaline sulphureted water, containing sulphuret of sodium, bicarbonate of magnesia (strong), bicarbonate of lime, chloride of magnesia, a trace of chloride of sodium and silica. This water has remarkable effect on the tincture of Campeachy, due, I believe, to the reaction of the sulphuret of alkali present, and contrasting strongly with the same test added to the waters of Kates' Creek, near by. (A. G. S. Second Rept. of a Geological Reconnaissance-1860, p. 99) No. # WISENAUT CHALYBEATE SPRING Near Kates! Branch of the Quachita River. This water has a slight deoxidizing effect on salts of soda. #### Analysis of Water Bicarbonate of Iron Bicarbonate of Lime Bicarbonate of Magnesia Bicarbonate of Soda Sulphate of Magnesia (trace) Sulphate of Soda (trace) (A. G. S. Second Rept. of Geological Reconnaissance-1860, p. 100) No. #### CHALYBEATE SPRING Near Kates' Branch of the Ouachita River. The spring is owned by J. B. Lemon. It has only a feeble deoxidizing effect. 189 No. 139--Continued # Analysis of Water Bicarbonate of Iron Bicarbonate of Lime Bicarbonate of Magnesia Chloride of Sodium (and perhaps a trace of) Carbonate of Alkali. (A. G. S. Second Report of a Geological Reconnaissance1860, p. 100) No. xxx 190 #### IRON'S SULPHUR SPRING: This spring is located on the Sulphur Rock of the north branch of the Ouachita. There are four principal springs which are situated within about half a mile of each other, known as the White, Black, and Red Sulphur, etc. They all contain essentially the same ingredients, but in different proportions. They are alkali and free sulphuretted hydrogen. (A. G. S. Second Rept. of a Geological Reconnaissance-1890, p. 100) No. 191 ### COLLIER SPRING Sec. 27, T. 2 S., R. 24 W., near Norman. This spring is in the Ouachita National Forest and has a covered spring-house with concrete floor. The water is piped through two 2-inch pipes and flows into Collier Creek. The Discharge has not been measured, but is estimated at 1000 gallons per day. This spring is on the Scenic Highway through the Forest and is in one of the roadside developments undertaken by the CCC. (W. B. McDowell) #### MONTGOMERY COUNTY ### No. 184 100 190 192 ### EPP SPRING No. 1 At Caddo Gap. Elev. 419 feet (approximately). # Analysis of Water | | Parts | |-----------------------------|--------------------------------| | | $\mathtt{per}$ | | | million | | Total Dissolved Solids | 24.0 | | Alkalinity (methyl orange) | 4.5 | | Alkalinity (phenolphtalein) | 0.0 | | Chloride | 2.6 | | Nitrite | none | | | | | | Grains per U.S. gallon | | Total Dissolved Solids | U.S.<br>gallon<br>1.40 | | Alkalinity (methyl orange) | U.S.<br>gallon | | Alkalinity (methyl orange) | U.S.<br>gallon<br>1.40 | | | U.S.<br>gallon<br>1.40<br>0.26 | Laboratory Number 2488. Harrison Hale, University of Arkansas, analysist. # No. x1005 1282 1293 1.93 # EPP SPRING No. 2 At Caddo Gap. Elev. 419 feet (approximately). # Analysis of Water | | per million | |-----------------------------|--------------| | Total Dissolved Solids | <b>36.</b> 8 | | Alkalinity (methyl orange) | 5.8 | | Alkalinity (phenolphtalein) | 0.0 | | Chloride | 2.0 | | Nitrite | none | # MONTGOMERY COUNTY **191** 193 No. 166 Cont. | | Grains per U.S. gallon | |-----------------------------|------------------------| | Total Dissolved Solids | 2.15 | | Alkalinity (methyl orange) | 0.33 | | Alkalinity (phenolphtalein) | 0.00 | | Chloride | 0.12 | | Nitrite | none | Laboratory Number 2488. Harrison Hale, University of Arkansas, analysist. # No. 186 187 192 194 # DALE SPRING At Caddo Gap. Spring of Dr. J. R. Dale, Caddo Gap. Elev. 419 feet (approximately). # Analysis of Water | | Parts<br>per<br>million | |------------------------|--------------------------------------| | Total Dissolved Solids | 161.8<br>125.0<br>0.0<br>2.9<br>none | | | Grains per<br>U.S.<br>gallon | | Total Dissolved Solids | 9.44<br>7.29<br>0.00<br>0.17<br>none | The Dale Spring also contains an unusual amount of iron, but we are unable to find any appreciable amount of lithium. Laboratory Number 2488. Harrison Hale, University of Arkansas, analysist. #### NEVADA COUNTY No. 1990x 195 #### JUDGE HUBBARD'S SPRING Sec. 13, T. 10 S., R. 23 W., 2 or 3 miles north of Prairie D'Anne. Elev. 250 feet (approximately). Bicarbonate of iron, Chloride of sodium, A trace of chloride of magnesia, This water was found to be a weak saline chalybeate. (A. G. S. Second Rept. of a Geological Reconnaissance-1860, p. 117) No. 190x 196 #### IRON SPRING Sec. 13, T. 10 S., R. 23 W. Known as Judge Hubbard's spring. The following qualitative analysis is given: This water was found to be a weak saline chalybeate, containing bicarbonate of iron, a trace of chloride of magnesia, chloride of sodium, and a small quanity of sulphate of soda and magnesia. Elev. 319 feet. (U. S. G. S. P 46, p. 266, No. 553) No. 1992x 197 #### BIG SULPHUR SPRING Sec. 21, T. 13 S., R. 21 W. Rosston is one of the oldest villages in the state. The Boswell Tavern near the spring was the stage stand and place for changing horses in the early days. Elev. 370 feet (approximately). (Hope Star, June 26, 1936) #### SPANISH PIANO SPRING Sec. 14, T. 15 N., R. 22 W., near Murray. The spring is owned by Amos A. Neal, Murray, Arkansas. Elev. 1200 feet (approximately). (Amos A. Neal) 10. ### R. L. SHERFIELD SPRING Sec. 9, T. 15 N., R. 23 W., near Boxley. The spring is owned by R. L. Sherfield. Elev. 1200 feet (approximately). (Luther Edgmond) No. ### EDGIMMOND SPRING HW NW No. Sec. 11, T. 15 N., R. 23 W., near Boxley. The spring is owned by Fayette Edgemond. Elev. 1200 feet (approximately). (Luther Edgmond) No. #### SALTPETER Sec. 20, T. 15 N., R. 23 W., 36 miles south of Harrison. The spring is owned by M. L. Edgmond. Elev. 1200 feet (approximately) (Luther Edgmond) No. #### TOM THUMB SPRING SEL SEL, Sec. 20, T. 17 N., R. 21 W., 6 miles from Marble City. It is on the west side of Gaither Cove, on a bench of Baither Mountain, and 520 feet above the bottom of the cove. The location is beautiful and picturesque; the bench on which the spring is situated is from a few yards to a quarter of a mile in width and extends around the cove. The spring is in rocks of the Lower Carboniferous age, 520 feet above the Silurian rocks, which outcrop in #### NEWTON COUNTY the creek in the bottom of the cove. It is 190 feet above the Boone chert and either in or just above the Marshall shale. At the spring the surface is covered with debris and talus from the cliff, but below the spring the Marshall shale is exposed in a heavy bed. The high perpendicular cliff above the spring is of Millstone Grit, which forms a prominent wall around the cove. There is but one spring which is not large, flowing seventy-five gallons per hour, but which is said to remain constant, uninfluenced by continued rains or drouth. Elev. 1000 feet (approximately). Analysis of Water Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl Carbonate of Soda NagCO3 Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Magnesia MgSO4 Total | Grains per U.S. gallon 1.49 .14 2.84 7.53 .19 .36 12.55 | Fer cent<br>of total<br>solids<br>11.86<br>1.12<br>22.63<br>60.00<br>1.32<br>2.87<br>100.00 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------| | Found | | | | Silica SiO <sub>2</sub> Sodium Na Magnesium Ng Calcium Ca Iron Fe Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> Chlorine Cl Total | 1.49<br>1.29<br>.0004<br>3.01<br>.09<br>.0016<br>6.13<br>.09<br>12.102 | 12.31<br>10.68<br>.003<br>24.876<br>.74<br>.013<br>50.65<br>.74<br>100.00 | Water collected by assistant T. C. Hopkins, February 11, 1892. Analysis by A. E. Menke. Temperature of air, 40.28° F.; of water, 56.3° F. Total solids in solution, 15.00 grains per U. S. gallon. The water is clear, odorless, and has a slightly alkaline taste. The analysis given above shows it to contain much more solid matter in solution than the Eureka Springs water. (A. G. S. Ann. Rept., 1891, vol. 1, p. 97) #### ALUM SPRING Sec. 8, T. 13 S., R. 17 W., 3 miles west of Camden. The principal constituents of this spring are acid sulphate of alumina (and perhaps potash), but the acid reaction of the water rather indicates the more feeble base, alumina; a sulphate of the protoxide of iron; and traces of sulphate of magnesia and lime. (U. S. G. S. P. 46, p. 268) No. ### POISON SPRINGS Sec. 35, T. 12 S., R. 18 W., 9 miles northwest of Camden on Highway No. 24. There are between 30 and 35 small springs all coming from a sand formation. Poison Springs is a historical spot being the site of a bitter Civil War battle, the only one fought in South Arkansas. Although the water is pure and wholesome the name Poison Springs was given it many years ago when a force of men were busy cutting the road through the forests in mid-summer. It seems that one of the workmen became overheated and then drank too much of the cold water, became ill and later died. Some of the others thought the spring water was poisonous, and that is how the springs were named. Under a WPA project a recreation park is being established there. A dam will be constructed to form a 150 acre lake which will be fed by the water from the spring. (Paul Carruth, County Agent) #### PHILLIPS COUNTY No. ### BIG SPRING T. 2 S., R. 5 E., near Helena. This spring is saturated with sulphuretted hydrogen and the vater gave no indication, either in an acid or alkaline solution, of any metal except a trace of iron. Therefore, it is not likely to contain any mineral poison; and though strongly charged with bicarbonate of lime and magnesia, it is not probable that these ingredients are particularly injurious in water; except it be to those suffering from calculus. Elev. 194 feet. #### PHILLIPS COUNTY 205 No. 2006-Continued ### Analysis of Water | Carbonic acid | strong | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------| | $Lim\theta$ . The second se | strong | | Magnesia | strong | | Iron mananament and an | trace | | (A. G. S. Ann. Rept., 1891, vol. 1, p. 102) | | #### FIKE COUNTY No. 191 206 ### HOPPER SPRING Sec. 12, T. 5 S., R. 26 W., at Hopper. The water issues from a crevice between two massive, steeply dipping layers of novaculate in the uppermost division of the Arkansas novaculite. This water contains in solution much iron which is deposited in the wooden troughs carrying the water down the mountain side and on the rock over which the water flows. Believed waters are meteoric. Elev. 1000 feet (approximately). (U. S. G. S. Bulletin 808) No. xk92 207 #### ROYSTON SPRING Sec. 33, T. 7 S., R. 25 W., near Murfreesboro. This is a chalybeate saline spring. Elev. 400 feet (approximately) (U. S. G. S. P 46) #### POINSETT COUNTY No. 188 208 #### DR. PATTEN'S SPRING 2 miles south of Walnut Camp. This is a very weak chalybeate, and can hardly be said to have medicinal properties. Elev. 200 feet (approximately) Analysis of Water | Bicarbonate | of | Lime | A | small | quantity | |--------------|----|----------|----|-------|----------| | Bicarbonate | of | Iron | | | quantity | | | | Magnesia | | | | | Sulphates | | | | | quantity | | (A. G. of A. | | | 41 | trace | | #### No. 34 209 # TANNAHILL SPRING $NE_{4}^{T}$ , Sec. 5, T. 1.S., R. 30 W. Elev. 900 feet (approximately). (V. B. Goddard, Sec'y. Mena Chamber of Commerce) #### No. 10 210 #### BETHESDA SPRINGS $NW_{4}^{1}$ SE $_{4}^{1}$ , Sec. 31, T. 2 S., R. 30 W., 3 miles south of Mena. Bethesda springs has always been a popular spot for outings and its waters have always been considered of medicinal value. In the early days, they were the Mecca of ailing Indians and white settlers who came to camp beside them, drink of their waters and bathe in the little stream. The following story is told of the naming of the springs: It was in 1881 that old Uncle Bille Green, a resident of Dallas, the first settlement in Polk County, journeyed to north Arkansas seeking relief from an ailment at the then widely known curative springs of that section. While there, he noticed the similarity of the springs there with those near his home. He remembered how people from the lowlands came and camped at the Dallas springs and praised their curative powers, and finally he came back home, convinced that the springs at his own door were as potent as the much advertised northern springs. This thought was so constantly on his mind that one night he had a dream or, as he felt, a vision. A "voice" told him that these were healing waters and that their name should be called Bethesda, which name he would find at a certain place in the Bible. Waking, he sought his Bible, turned to the place, and read there the story of the troubled waters of Judean Bethesda. He told his friends of his vision, the story was published in the little newspaper, the Dallas Courier; and with the naming of the springs, their fame spread until in a few years a settlement had sprung up around them that rivaled Dallas, the county seat less than a mile away. In its heyday, the little town of Bethesda boasted a population of nearly 500 people, an academy, a 40-room hotel, a telephone line, and a 75-foot observation tower that crowned one of the peaks that cluster round the hollow where flow the springs. Today, all that remains is the springs and a few scattered houses fast falling into decay. Elev. 1142 feet (approximately) # Analysis of Water | SilicaOxides of Iron & Alum- | No. 1 Grains per gal. 2.11 | Bethesda No. 2 Grains per gal021 | No. 3 Grains per gal005 | |--------------------------------------------------|----------------------------|----------------------------------|-------------------------| | inum | 1.01 | .81 | •74 | | Sodium | .23 | .35 | .14 | | Potassium | trace | *** | *** | | Calcium | 1.07 | 1.23 | .95 | | Magnesium | 1.50 | 1.72 | 2.01 | | Chloride radical | .31 | .41 | .25 | | Nitrate radcial | trace | trace | | | Sulphate radical | 1.92 | 2.04 | 2.27 | | Carbonate radical | 2.21 | 1.87 | 1.72 | | Shows trace of hydrogen Analysis made by chemist | | | oting & | Construction Co., Texarkana, Texas, Sept. 24, 1924. No. # JANSSHIN PARK SPRING Sec. 18, T. 2 S., R. 30 W. The spring is owned by the City of Mena. It is a beautiful spring in Janseen Park, Mena. Elev. 1142.5 feet. # Analysis of Water | | Parts po<br>100,000 | | f water | |--------------------------------------------------------------|---------------------|---------|--------------| | Silica | .61 | | | | Iron & Aluminum Oxides | .26 | | | | Calcium Carbonate | 1.00 | | | | Magnesium Carbonate | | | | | Sodium Sulphate | | | | | Sodium Carbonate | | | | | Sodium Chloride | 1.02 | | | | Magnesium Sulphate | | | | | Magnesium Chloride | .67 | | | | Calcium Sulphate | .06 | | | | Calcium Chloride | .06 | | | | Made by Chemical Dept., College of Arkansas, Sept. 10, 1910. | | culture | , University | #### POLK COUNTY No 212 #### DALLAS TOWN SPRING Sec. 32, T. 2 S., R. 30 W., 1 mile west of Dallas. The town spring was tested at the fountain-head, and found to be a tolerably pure water, containing only traces of carbonates, chlorides, and sulphates of the alkalies and alkaline earths. Elev. 1000 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 106) No. 213 SW NW NW Springs at this location about 20 feet apart. One has a wooden box while the other has not been improved. The water "boils" up out of the ground. This is a weak chalybeate water, is odorless and has a neutral reaction. Elev. 1099 feet (approximately). # Analysis of Water The chief constituent is carbonate of iron. There are present besides: Carbonates of lime and magnesia; Chlorides of the alkalies (sodium and potassium); Small quantity of organic matter; Silica; free carbonic acid. Discharge from 70 to 130 gallons per hour. Total solid material in solution, 2.5 grains per U. S. gallon. (Forest Service Fersonnel, Mena) # No. 790x 214 # MINE CREEK SPRING SE<sup>1</sup>/<sub>4</sub>, Sec. 31, T. 3 S., R. 28 W., near Big Fork at Mine Creek Camp Ground on Mine Creek Road. This spring development is the water supply for the camp ground which is owned and operated by the U. S. Forest Service as a full public recreational area. Elev. 1300 feet (approximately) Temperature of water is 50° F. (Forest Service Personnel, Mena) #### ABERNATHY SPRING SW<sup>1</sup>/<sub>4</sub> NW<sup>1</sup>/<sub>4</sub>, Sec. 25, T. 3 S., R. 28 W., near Big Fork. The spring is owned by R. S. Abernathy, Big Fork. The water from this spring drains into Big Fork Creek and it is used for domestic purposes. The discharge is 30 gallons per minute. Elev. 1099 feet (approximately). # Analysis of Water The chief constituent is carbonate of iron. There are present besides: Carbonates of lime and magnesia; chlorides of the alkalies (sodium and potassium); small quantity of organic matter; silica; free carbonic acid. Discharge from 70 to 130 gallons per hour. Total solid material in solution, 2.5 grains per U. S. gallon. This is a weak chalybeate water; it is odorless and has This is a weak chalybeate water; it is odorless and has a neutral reaction. There are two springs at this location about 20 feet apart. One has a wooden box while the other has not been improved. The water boils up out of the ground. The temperature of the water is 50°. (Forest Service Personnel) #### POLK COUNTY No.215 ### SILVER WORLD TUNNEL SPRING $SE_{4}^{1}$ $NE_{4}^{1}$ , Sec. 15, T. 3 S., R. 29 W., near Board Camp. Elev. 1200 feet (approximately). (Forest Service Personnel, Mena) No. 216 # BLALOCK SPRINGS Sec. 19, T. 4 S., R. 28 W., near the head of Saline Creek. Elev. 1000 feet (approximately) # Analysis of Water # Hypothetical Combination | Constituents | Grains per U.S. gallon | Per cent of total solids | |--------------------------------------------------|------------------------|--------------------------| | Chloride of Soda NaCl | 2.07 | 11.17 | | Chloride of Lithia LiCl | •35 | 1.90 | | Sulphate of Soda Na <sub>2</sub> SO <sub>4</sub> | 1.85 | . 9 . 99 | | Sulphate of Fotash K2SO4 | .37 | 2.00 | | Sulphate of Magnesia MgSO4 | 2.08 | 11.22 | | Sulphate of Lime CaSO <sub>4</sub> | 8.36 | 45.05 | | Sulphate of Iron Fe SO <sub>4</sub> | .24 | 1.30 | | Organic matter | 3.23 | <u>17.37</u> | | Total | 18.54 | 100.00 | | Found | | | | Sodium Na | 1.42 | 7.65 | | Potassium K | .17 | .91 | | Magnesium Mg | .41 | 2.21 | | Calcium Ca | 2.46 | 13.25 | | Lithium Li | .14 | .74 | | Iron Fe | •09 | .47 | | Sulphuric Acid SO <sub>4</sub> | 9.18 | 49.46 | | Chlorine Cl | 1.47 | 7.90 | | Organic matter | 3.22 | 17.31 | | Total | 18.56 | 100.00 | Analysis by C. M. Riley. Total solid material in solution, 18.56 grains per U. S. gallon. Sulphuretted hydrogen (HoS), 6.94 grains per U. S. gallon. (A. G. S. Ann. Rept. 1891, vol. 1, p. 29) # BARD SPRING SW<sup>1</sup>/<sub>2</sub> NE<sup>1</sup>/<sub>4</sub>, Sec. 20, T. 4 S., R. 28 W., near Athens Junction, Big Fork-Athens Road and Blalock County Road. This spring is part of a camp ground development called Bard Springs Camp Ground owned and supervised by the U. S. Forest Service for full public use. This water is said to have medicinal properties. Temperature of water is 60° F. Elev. 1000 feet (approximately). (Forest Service Personnel, Mena) # Analysis of Water Sample of water received 8/25/36. | | Parts<br>per<br>million | |----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------| | Total Solids | 175.0 | | Volatile | 32.0 | | Silica (SiO <sub>2</sub> ) | 14.7 | | Iron Oxide (Fe203) | 5.3 | | Calcium Oxide (CaO) | 47.1 | | Magnesium Oxide (MgO) | 23.0 | | Sodium Chloride (NaCl) Magnesium Chloride (MgCl <sub>2</sub> ) Magnesium Carbonate (MgCO <sub>3</sub> ) Calcium Sulfate (CaSO <sub>4</sub> ) | 3.4<br>6.0<br>42.7<br>26.2 | | Calcium Carbonate (CaCO <sub>3</sub> ) | 64.7 | | Ferric Oxide (Fe <sub>2</sub> O <sub>3</sub> ) | 5.3 | | Silica (SiO <sub>2</sub> ) | 14.7 | | Organic & Volatile Matter | 12.0 | | | | Laboratory No. HHP-874. Analysis of spring for K. E. Merren. No. ### COLD SPRING #### GILHAM SPRING NE, Sec. 21, T. 4 S., R. 30 W., Hartley, across river from Cold Spring. Elev. 1300 feet (approximately). (V. B. G Goddard, Sec'y, Mena Chamber of Commerce) No. ### BOG SPRINGS Standard, Sec. 10, T. 5 S., R. 32 W. These springs are owned by Walter Jones, Bog Springs and are located in the pass of Cross Creek through South or Bog Mountain on the west side of the creek. They flow out from the foot of the mountain only a few yards from the creek. The principal spring forms a considerable bog. As a rule, this area of Carboniferous rocks is well supplied with springs, and the streams are remarkably clear and the waters soft. Elev. 1160 feet. (V. B. Goddard, Sec'y., Mena Chamber of Commerce) No. # TYRA SPRINGS Sec. 2, T. 5 S., R. 32 W. These springs are on the north bank of a small tributary of the Rolling Fork of Little River just west of Hatton Gap. The south bank and bed of the stream are novaculite, so that they appear to come from a layer of shale immediately overlying the novaculite. The temperature of the water is 58° and the temperature of the air is 52°. (V. B. Goddard, Sec'y., Mena Chamber of Commerce) No. # WILLY SPRING NET NET. Sec. 12, T. 4 S., R. 30 W., near Hartley. Elev. 1300 feet (approximately). (V. B. Goddard, Sec'y., Chamber of Commerce) ### POPE COUNTY No. #### GIP SPRING Sec. 5, T. 8 N., R. 19 W., at Gip. The spring is owned by I. L. Talkington. On standing the water leaves a yellowish brown deposit. The water is used for medicinal purposes and has a temperature of 65° F. Elev. 700 feet (approximately). (U. S. G. S. W. 102) # STATE SALT SPRINGS NWO HWO, Sec. 12, T. 8 N., R. 18 W. 40 acres were sold to James B. Jones, heir-at-law of William J. Jones, by State on March 15, 1854, for \$2.00 per acre. Elev. 500 feet (approximately). (State Land Commissioner's Office) 10. # CAGLESVILLE SPRING Sec. 25, T. 10 N., R. 19 W., Caglesville. The temperature of water is 55° F. The water is soft and shows trace of gas. Elev. 700 feet (approximately). (U. S. G. S. W 102) No. #### SHOUSE SPRING Sec. 26, T. 12 N., R. 20 W., near Freeman. The mineral content is iron and sulphur. Elev. 1000 feet (approximately). (U. S. G. S. W 102) #### PULASKI COUNTY No. #### STERLING SPRING T. 1 N., R. 12 W., Little Rock, 514 Rock Street. The spring is leased by Sterling Department Stores. The diameter of the basin is 72 inches and is walled with concrete. Elev. 266 feet. (C. J. McShane, Assistant Manager, Sterling Dept, Store) NO. # WORTHIELD BANK SPRING T. 1 N., R. 12 W., Little Rock, 4th & Main Streets. The spring is owned by the Worthen Eank, Little Rock. It is beneath the Worthen Bank Building, is not used, and drains into the city sewer. The discharge of this spring is 35 gallons per minute. (Elev. 266 feet. (A. E. Hayes, building engineer) ### No. x23x5 230 # BOYLE BUILDING SPRING T. 1 N., R. 12 W., Boyle Building, Little Rock. Mr. C. M. Duncan, building manager, relates that he was told by Mr. Brack who owned the property where the Boyle Building is located that years ago there was a fine well on the place. When the basement for the Boyle Building was dug in 1908, this spring was struck. It flowed a stream as large as a man's arm. For six years the water was utilized for all purposes in the building but in 1915 when the basement for the Blass Building was dug at 4th & Main Streets the Boyle Building spring was diminished over 90 per cent and now the water is only sufficient for condensation purposes. The discharge was 15,000 gallons per minute in 1915. Elev. 266 feet. (C. M. Duncan, building manager) No. 936 237 ### EXCHANGE BANK SPRING T. 1 N., R. 12 W., Exchange Bank Building, Capitol Avenue and Main Streets, Little Rock. This spring was struck when the Exchange Bank Building basement was dug in 1920. The spring was concreted, with holes left in the floor of the basin for the water to come through and the basin was filled with gravel. Water was obtained that was used for toilet purposes. When the basement of the Worthen Bank Building at 4th and Main Streets was dug in 1929, a spring was encountered which diminished the flow at the Exchange Bank Building, but Mr. Baldwin had the spring deepened and the flow was maintained. After he left the managership the spring was filled up. Elev. 266 feet. (Asst. to J. D. Weeks building engineer, and Warren Baldwin) # No. 232 # FONES SPRING T. 1 N., R. 12 W., 2nd and Rock Streets, Little Rock. This spring has a discharge of ½ gallon per minute. Elev. 266 feet. (Claude Barron, warehouse manager) # No. 233 #### GUM SPRING T. 1 N., R. 12 W., 1613 McGowan Street, Little Rock. This is an old spring in Little Rock and was used during the #### PULASKI COUNTY Civil War days when the soldiers encamped nearby. It has been continuously used since that time particularly by negroes who live in its vicinity. During the summer of 1935 when Little Rock city water was so bad, it is reported that people stood in line to fill containers. It was analyzed several years ago, and last summer the bacterial count was made several times and the water was found to be safe for drinking purposes. Elev. 266 feet. (Dr. L. L. Marshall) No. #### CASCADE SPRING T. 1 N., R. 12 W., 3018 High Street, Little Rock. The spring is owned by Mrs. J. W. Bailey, Little Rock. The water is marketed under the name of Cascade Water. The discharge is 5,000 gallons per minute daily. Elev. 266 feet (approximately) (Orville Farquharson) No. #### RADIANT SPRING T. 1 N., R. 12 W., Little Rock. The spring is owned by E. B. Jones, 2106 High, Little Rock. The discharge is 2 gallons per minute. Elev. 266 feet (approximately). (E. B. Jones) No. #### RALEIGH SPRING T. 1 N., R. 12 W., 2301 Pulaski Street, Little Rock. This water flows from the side of a slope into a 2-inch pipe. It is exceptionally clear and has no odor. There are three basins at the emergence of water on the side of the hill. A 2-inch pipe carries the water to the salesroom some 50 feet below. The water is marketed by the Raleigh Springs Water Company. Elev. 266 feet (approximately) # Analysis of Water | Constituents | Grains per<br>U.S.<br>gallon | |-------------------------------------|------------------------------| | Sulphate of Magnesia | 2.82 | | Chloride of Sodium | 2.82 | | Sulphate of Lime | 2.82 | | (L. D. Haro. Raleigh Water Company) | | #### PULASKI COUNTY No. # FERN CLIFF SPRING $SE_4^1$ , Sec. 35, T. 2 N., R. 15 W. This spring is owned by Dr. A. C. Shipp. # Analysis of Water #### Determinations | | Parts per million | Grains per U.S. gallon | |--------------------------------------------|-------------------|------------------------| | Silica SiO2Oxides of Iron and Aluminum Fe2 | 3.00 | 0.17 | | 03-A1203 | 1.85 | 0.11 | | Magnesium | trace | trace | | Calcium Ca | 3.64 | 0.21 | | Sodium Na | 1.30 | 0.08 | | Chloride Cl | 2.00 | 0.12 | | Sulfate SO4 | 5.38 | 0.31 | | Alkalinity-methyl orange | 3.50 | 0.20 | | Phenolphtalein | 0.00 | 0.00 | | Total Dissolved Solids | 19.20 | 0.11 | | | | * * | | Hypothetical Combin | nation | | | Silica SiO2 | 3.00 | 0.17 | | Fe203-Al203 | 1.85 | 0.11 | | Magnesium Sulfate MgSO4 | trace | trace | | Calcium Sulfate CaSO4 | 7.62 | 0.44 | | Calcium Carbonate CaCO3 | 3.50 | 0.20 | | Sodium Chloride NaCl | 3.30 | 0.19 | | | 19.27 | 1.11 | This water is of exceptionally low mineral content. In my analytical work on waters I have examined many, many samples, but do not recall any coming from the earth with so small an amount of mineral matter. (Harrison Hale, Consulting Chemist, Univ. of Arkansas.) ### GRANITO HOUITAIN SPRING Sec. 5, T. 1 S., R. 12 W., I mile south of Sweet Home, Granite Hountain Hospital. The spring is owned by Dr. S. P. Junkin. It is in a heavy pine forest on the lower slope of Granite Hountain and has a local reputation as pure water. Elev. 253.6 feet. (Dr. S. P. Junkin.) No. #### HERMANDO SERTING Sec. 3, T. 1 S., R. 13 W., at Habelvale. The spring is owned by Walter Mash, Habelvale. This spring was formerly known as Rock Wall Spring. The name of the spring changed about 1931 to avoid confusion with "Hoc-Arc", another spring water marketing company. The water from Hernando Spring is marketed. The discharge of the spring is 48 gallons per minute. Elev. 309 feet. #### Analysis of Water | .* | Parts<br>per<br>mi <b>llio</b> n | | Parts<br>per<br>million | |-------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|-------------------------------| | Silica Oxide Iron Fe Aluminum Al Lime Ca Magnesium Mg | 10.00<br>0.10<br>0.50<br>57.00<br>1.70 | Sodium Ha Potassium K Sulphates SO4 Chlorine Index Cl Carbonate Radical | 16.80<br>1.30<br>5.00<br>5.00 | | | · | CO <sub>3</sub><br>Bicarbonate MCO <sub>3</sub> | 30.00<br>48.00 | Wm. F. Manglesdorf, M. D. State Chemist. (Walter Hash) Ho. #### MOMIEM MILL SPRING Sec. 27, T. 1 H., R. 14 W., at General Garland's place. (Upper spring). The water comes from shales of Lower Silurian age. Elev. 325.1 feet. Analysis of Water Hypothetical Combination ### FULASKI COUNTY 239 No. 234-Analysis continued | | Grains per | Per cent | |-----------------------------|------------|----------| | Constituents | U.S. | of total | | | gallon | solids | | Silica SiO2 | .71 | 10.95 | | Carbonate of soda NagCO3 | .80 | 12.32 | | Carbonate of Potash K2CO3 | .41 | 6.32 | | Carbonate of Magnesia MgCO3 | .69 | 10.55 | | Carbonate of Lime CaCO3 | 3.54 | 54.62 | | Sulphate of Lime CaSO4 | 34 | 5.24 | | Total | 6.49 | 100.00 | | Carbonic Acid CO2, free | 1.61 | | | Ti 3 | | | | Found | | | | Silica SiO2 | .71 | 11.09 | | Sodium Na | .27 | 4.23 | | Potassium K | .23 | 3,60 | | Magnesium Mg | .20 | 3.13 | | Calcium Ca | 1.51 | 23.57 | | Lithium Li | trace | trace | | Iron and Aluminum Fe and Al | traces | traces | | Sulphuric Acid SO4 | .24 | 3.76 | | Carbonic Acid CO3 | 3.25 | 50.62 | | Bromine and Iodine Br and I | •00 | •00 | | Chlorine Cl | trace | trace | | Boric Acid B203 | •00 | •00 | | Ammonium NH4 | •00 | .00 | | Total | 6.41 | 100.00 | | Carbonic Acid CO2, free | 1.61 | | Total solid material in solution, 6.50 grains per U. S. gallon (by analysis). (A. G. S. Ann. Rept. 1891, vol. 1, p. 55) #### No. x22xx240 #### NEW SPRING Sec. 27, T. 1 N., R. 14 W., Alexander, at General Garland's place (New or lower spring). Elev. 325.1 feet. Analysis of Water Hypothetical Combination 240 ### No. 235--Analysis continued | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------| | Silica SiO2 | .58<br>.48<br>.12<br>.48<br>1.92<br>.70<br>4.28<br>.53 | 13.55<br>11.22<br>2.80<br>11.22<br>44.86<br>16.35<br>100.00 | | Found | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Lithium Li Iron Fe Aluminum Al Sulphuric Acid SO <sub>4</sub> Carbonic Acid GO <sub>3</sub> Boric Acid B <sub>2</sub> O <sub>3</sub> Ammonium NH <sub>4</sub> Bromine and Iodine Br and I—Chlorine Cl | .58<br>.21<br>.07<br>.14<br>.98<br>trace<br>trace<br>.00<br>.49<br>1.82<br>.00<br>.00<br>.00 | 13.52<br>4.90<br>1.63<br>3.26<br>22.83<br>trace<br>trace<br>.00<br>11.42<br>42.42<br>.00<br>.00<br>.00<br>trace | | Total Carbonic Acid (CO2, free | 4.29<br>.53 | 100.00 | Total solid material in solution, 4.30 grains per U. S. gallon. The analyses of the Lower and Upper springs were made in the laboratory of the U. S. Geological Survey, by J. E. Whitfield. (A. G. S. Ann. Rept. 1891, vol. 1, p. 56) # No. XXX 241 ### WATKINS SPRINGS Sec. 30, T. 2 N., R. 11 W., North Little Rock. These springs withstood the drouths of 1925 and 1930. There are three springs. One is one half mile east of this location and the other is 200 yards northwest over the hill. This is very fine water and was marketed some years ago as Puritan Spring Water. Temperature of water is 60° F. These springs are tiled. Elev. 257 feet. 241 No. 236--Continued | | Parts per million | Grains per gallon | |------------------------------|-------------------|-------------------| | Silica Oxide | 10.5 | 0.6 | | Iron Oxide | 0.5 | 0.02 | | Aluminum Oxide | 4.5 | 0.26 | | Lime Oxide | 6.5 | 0.37 | | Magnesium Oxide | 1.2 | 0.06 | | Oxides of Sodium & Potassium | 6. | 0.34 | | Chlorine Radicle | 8. | 0.46 | | Sulphates | 1. | 0.05 | | Carbonates CO3 | 12. | 0.69 | | Total solids | <b>50.</b> | 2.9 | | Organic matter | 0. | 0. | Sample showed to be an excellent low mineral content spring water. Wm. F. Manglesdorf. Laboratory No. 13513, Aug. 17, 1927. (Fred D. Watkins) No. 242 # NEWTON SPRING (PURDOM) Sec. 26, T. 3 N., R. 12 W., 8 miles north of North Little Rock at Purdom Hill. The owner of this spring is John W. Purdom. This is a strong chalybeate water and of limestone character. Elev. 500 feet (approximately). (G. R. of A., 1859) No. 243 ### DE LEON SPRINGS $NW_{4}^{\frac{1}{4}}$ $NW_{4}^{\frac{1}{4}}$ , Sec. 24, T. 1 N., R. 14 W., near Martindale. This spring is owned by De Leon Springs Water Company, 707 Center Street, Little Rock, Ark. (U. S. G. S. Alexander Quad.) ### Analysis of Water Chemical Analysis and Bacteriologic Examination | | Grains per gallon | |------------------------|-------------------| | Silica Oxide | 0.35 | | Aluminum (A1) | 0.01 | | Magnesium (Mg.) | 0.01 | | Chlorine Radical (Cl.) | 0.29 | | Poassium (K) | 0.14 | | | Grains per<br>gallon | |----------------------|----------------------| | | Karron | | Carbonate Rad. (CO) | 0.09 | | Volatile Substances | 0.99 | | Iron (Fe) | 0.01 | | Lime (Ca) | 0.60 | | Sulphates (SO) | 0.19 | | Sodium (Na) | 0.18 | | Lithium (Li) | 0.01 | | Total Mineral Solids | 1.42 | Bacteriological Examination shows water to be free from any disease-producing bacteria. W. F. Manglesdorf, M. D., State Chemist. No. ### CRYSTAL SPRING Sec. 16, T. 1 N., R. 12 W., Little Rock, Ark. This spring is owned by Chas. E. Nolting, 2606 High Street and the water is marketed by Nolting Crystal Spring Company, 2606 High Street. Elev. 266 (approximately). (Chas. E. Nolting) #### RANDOLPH COUNTY No. #### RAVENDEN SPRINGS Sec. 6, T. 19 N., R. 2 W., at Ravenden, 6 miles back of Ozark foothills. "In the canyon about 200 yards below the spring, is a perpendicular cliff about 150 feet high. Just about 100 feet up the cliff is a hole almost five feet in diameter. Old settlers say that for many years, in the early history of the settlement, ravens, known to inhabit that part of Arkansas at that time, built their nests in this hole from year to year, where, 'safe from the eye of the hawk and the nose of the fox, they could raise their expectant young in absolute safety.' Hency the name, Ravenden Springs." Elev. 500 feet (approximately). (Rev. Joseph G. Taylor, Arkansas Gazette, October 24, 1937) No. ### RICE'S SPRING Sec. 11, T. 21 N., R. 1 W., situated on the waters of Mud Creek, a branch of Fourche Dumas. This is a hellath resort. The examination of this spring was made at a very unfavorable #### RAMDOLPH COUNTY time; the unusually heavy rains, which fell in the spring, had completely saturated the surface of the earth, and diluted the spring with fresh water. From the analysis it appears to be a weak chalybeate, whereas it is represented by those who frequent it in a dry time to be a strong sulphur water. In its present state, acetate of lead would give no reaction of sulphuretted hydrogen. Small deposits of hydrated brown oxide of iron (limonite) are seen at various places in this county. The most extensive are those near J. H. Imboden's on Eleven Point river, and in the vicinity of Old Jackson, close to the boundary line between Randolph and Lawrence counties. It is possible a sufficiency of good ore may be found at the latter locality to supply a small forge. The temperature of water is 62° F. Elev. 270 feet (approximately) ### Analysis of "ater Temperature of the air, 82°F., temperature of water, 62°F. Carbonic acid (abundant). Bicarbonate of lime. Bicarbonate of magnesia. Bicarbonate of the protoxide of iron. Sulphates, a trace? (First Report of a Geological Reconnoissance of Arkansas, 1857-1858, p. 207) No. #### BLM SPRING Soc. 9, T. 21 N., R. 2 W., near Elm Store. The spring is owned by Joe Stubblefield. This spring suddenly broke through the soil about fourteen years ago, 1890, making a passage about as large as a barrel. An oily scum showed for some time on the water. Another spring of hard water with medicinal properties is reported on the land of W. W. Waggoner, sec. 9, T. 21 N., R. 2 W. Elev. 500 feet (approximately). (U. S. G. S. W 102, 1904) 10. # MAYHARD SPRING Sec. 29, T. 21 N., N. 2 N., near Maynard. The spring is owned by R. J. N. Wyatt. Humerous other springs are reported within a radius of two or three miles. They are all of about the same character. The discharge of this spring is 50 gallons ner minute. Elev. 500 feet (approximately) (V. S. G. S. W 102) No. 232 R.D. 249 # COX'S ALUM SPRING SW4, Sec. 5, T. 1 N., R. 28 W. The water flowing from the shales is highly charged with mineral ingredients. Much of it is highly concentrated and cannot well be drunk without dilution. It is similar in taste to the well water at Sloane's on the southeast quarter of section 31, 3 S., 25 W. in Montgomery County. Mr. Cox has a number of tanks or pans in which he first soaks and boils pieces of the rock, afterward evaporating to dryness the solution obtained. Some of the reddish powder, in all respects like that made by evaporating the water of Sloane's well, was analyzed with the result as follows: Iron (ferrous), Sulphuric acid, Magnesium, Potassium, and Aluminum--very slight trace. Some quarrying or digging has been done along the line of a the fault which occurs at this place, and in the gorge of a stream which follows the fracture for some distance. the head of the gorge, several natural and artificial pools collect strong alum water from crevices in the rocks. Elev. 250 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1. p. 105) No. 333 251 250 # CHALYBEATE HILL SPRING Sec. 16-21, T. 3 N., R. 30 W., probably towards the south-west corner of 16. About 275 feet below the top of the Chalybeate Hill, a strong chalybeate water issues from the ferruginous sandstones in the southern slope of that hill, and considerable iron ore is strewed along the hillside. The water is a saline chalybeate, possessing strong deoxidizing powers. Elev. 600 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 112) No. 234 251 #### POTEAU SPRING Located in the Poteau Valley. The spring water rising from the shales of the Millstone grit, at Dr. James H. Smith's was also tested qualitatively, and found to contain principally chloride of sodium, a trace of bicarbonate of lime, and a trace of bicarbonate of magnesia. Elev. 600 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 113) # CAMPBELL SPRING 3 miles south of Snowball. The spring is owned by J. E. Isreal. Elev. 748 feet (approximately). (Homer L. Campbell, Snowball, Arkansas) No. ### KINNS SPRING TWO MUL, Sec. 27, T. 14 N., R. 18 W., 5 miles south of Eula. The spring is owned by Braskee Kimes. Elev. 801 feet (approximately). (J. C. Wasson, Eula, Arkansas) 10. ### LANDIS SPRING Sec. 23, T. 15 H., R. 14 W., Landis. Flev. 681 feet (approximately). (N. K. Williams, Marshall Arkansas) No. # PRUITTS SPRING INV. Sec. 25, T. 15 N., R. 15 W., northeast of Marshall. The spring is owned by J. P. Cypert, Joplin, Missouri. Elev. 1067 feet (approximately). (Frank Ellsworth, Hot Springs, Arkansas) No. 240 256 #### BLOWING CAVE STRING Sec. 10, T. 15 N., R. 16 W., at Zack. Blowing Cave is a remarkable wonder. A cold blast of air flows from this cave the year around, and a cold spring spouts from its mouth. It is a natural refrigerator and perishable products can be kept in it for long periods as in cold storage plants. Elev. 689 feet (approximately). (The Arkansas Ozarks, p. 31) No. 3x4 257 #### ZACK SPRING Sec. 10?, T. 15 N., R. 16 W., Zack, 100 feet from railroad station. This spring has a large flow and the water is good. It has a discharge of 8 gallons per minute. Elev. 689 feet (approximately). (Geo. C. Branner, State Geologist) #### SEVIER COUNTY No. 242 258 #### SALT SPRING Sec. 20?, T. 8 S., R. 32 W., near Chapel Hill. Elev. 372 feet (approximately). (U. S. G. S. P. 46) No. 2045 259 #### STATE SALT SPRING $W_2^1$ , $SW_4^1$ , Sec. 29, T. 8 S., R. 32 W. 160 acres were sold to George F. Boring by the United States on May 28, 1836, for \$1.25 per acre. Elev. 500 feet (approximately). (State Land Commissioner's Office) No. 244 260 # STATE SALT STRING $E_2^{\frac{1}{2}}$ SE $_4^{\frac{1}{2}}$ , Sec. 30, T. 8 S., R. 32 W. 160 acres were sold to George F. Boring by the United States on May 28, 1836, for \$1.25 per acre. Elev. 500 feet (approximately). (State Land Commissioner's Office) # COWDEN SPRING Sec. 36, T. 9 S., R. 32 W., near Horatio. The spring is owned by Herbert Cowden. The discharge is 80 gallons per minute. Elev. 331.5. # Analysis of Water Taste: Negative. Odor: Negative. Color: Clear and sparkling. Turbidity (Suspended matter): None. | | Parts | Grains | |----------------------------------------|----------------|--------| | | $\mathtt{per}$ | per | | | thousand | gallon | | | | | | Total Solids | 0.0400 | 2.34 | | Organic Matter | 0.0012 | 0.07 | | Silica | 0.0118 | 0.69 | | Iron and Alumina Oxides | 0.0018 | 0.11 | | Magnesium Oxide | 0.0029 | 0.17 | | Calcium Oxide | 0.0050 | 0.29 | | Sodium and Potassium Oxides | 0.0054 | 0.32 | | Carbonic Acid Anhydride | 0.0068 | 0.40 | | Chlorine | 0.0067 | 0.39 | | Sulphuric Acid Anhydride | ${ t None}$ | None | | Probable Combinations as they exist in | | | | Organic Matter | 0.0012 | 0.07 | | | 0.0118 | 0.69 | | Iron and Alumina Oxides | 0.0018 | 0.11 | | Magnesium Carbonate | 0.0061 | 0.36 | | Calcium Carbonate | 0.0077 | 0.45 | | Calcium Chloride | 0.0013 | 0.08 | | Sodium Chloride | 0.0101 | 0.59 | | Total Solids | 0.0400 | 2.35 | | Alkalinity as Calcium Carbonate | | 0.91 | | Soap Hardness as Calcium Carbonate | | 1.76 | C. M. Adams, Consulting Chemical and Sanitary Engineer. (Furnished by H. S. Cowden, Horatio, Arkansas) #### WALNUT SPRINGS $SE_4^1$ $SW_4^1$ , Sec. 27, T. 9 S., R. 31 W. The discharge of these springs was 25 gallons per minute, January 10, 1934. Elev. 500 feet (approximately). (Arkansas Geological Survey File) No. 262 #### NORWOODVILLE SPRING $NE_{4}^{\frac{1}{4}}$ , Sec. 32, T. 9 S., R. 31 W. Water is hauled to Nashville, Hope, De Queen, and Foreman, Arkansas, and to nearby towns in Texas for drinking purposes. The discharge of this spring is 80 gallons per minute, January 10, 1934. Elev. 300 feet (approximately). (Arkansas Geological Survey File) No. 263 #### STATE SALT SPRING $SE_{4}^{1}$ , Sec. 10, T. 10 S., R. 29 W., 6 miles northeast of Ben Lomond. 160 acres were sold to Ira Smoot by the United States on May 20, 1830. (L. R. Donation). Elev. 300 feet. (State Land Commissioner's Office) No. 264 #### STATE SALT SPRING SE<sup>1</sup>/<sub>4</sub>, Sec. 12, T. 10 S., R. 29 W. 160 acres were sold to John Rainey by the United States on May 19, 1830 (L. R. Donation) sale. This sale prior to admission of the state and before the Salt Springs were selected. Elev. 300 feet. (State Land Commissioner's Office) No. 265 #### STATE SALT SPRING $SW_{4}^{1}$ $SE_{4}^{1}$ , Sec. 15, T. 10 S., R. 29 W., 4 miles northeast of Ben Lomond. 40 acres were sold to R. A. Gilliam by the state on March 12, 1900, for \$1.25 per acre. Elev. 300 feet. (State Land Commissioner's Office) #### SEVIER COUNTY No. 266 ### STATE SALT SPRING $W_2^{\frac{1}{2}}$ NW $_4^{\frac{1}{2}}$ , Sec. 1, T. 10 S., R. 32 W., south of Horatio. 80 acres were sold to B. H. Kinsworthy by the state on January 4, 1873 for \$1.25 per acre. Elev. 331 feet. (State Land Commissioner's Office) No. 267 #### WALNUT SPRING SE<sup>1</sup>/<sub>4</sub> SW<sup>1</sup>/<sub>4</sub>, Sec. 27, T. 9 S., R. 31 W., near Horatic. There are several other springs near this spring. The discharge of this spring is 25 gallons per minute. Elev. 330 feet. (approximately). (Arkansas Geological Survey File.) No. 268 ### STATE SALT SPRING $SE_{4}^{1}$ , Sec. 19, T. 8 S., R. 32 W. 160 acres were sold to John Orr by the United States on May 30, 1936. Elev. 330 (approximately). (State Land Commissioner's Office) #### SHARP COUNTY No. 269 #### TOWN SPRING NW1 NW1, Sec. 3, T. 16 N., R. 6 W., on Main Street of Evening Shade. This spring belongs to the Estate of C. W. Shaver, Evening Shade, Ark. This spring forms the only source of water for many families in the town. During the 90 years of observations by three generations of the Shaver family the supply has never varied. The spring was originally called "Plum Spring" by pioneer settlers who were wont to lie in wait and shoot deer that came to drink there. In time of drought people came from towns several miles away for water. Depth is 18 inches and diameter of basin is 30 inches. Discharge is 60 gallons per minute and is about the same all the time. (Mrs. Caruth S. Moore) #### SHARP COUNTY No. 260 # BUBBLING SPRING (MILL CREEK SPRING) NW1 NE1, Sec. 10, T. 16 N., R. 6 W., near Evening Shade. Feeds Mill Creek, source of power for hydro-electric plant which supplies Evening Shade. Elev. 500 feet (approximately) (Mrs. Caruth S. Moore) No. 261 #### CHRISTENBERRY SPRING Sec. 25, T. 16 N., R. 4 W., near Emery. The owner of the spring is P. M. Christenberry, Emery, Ark. Elev. 500 feet (approximately). (Mrs. Caruth S. Moore). #### STONE COUNTY No. 262 # BON AIR (CHALYBEATE) SPRING $NW_{4}^{1}$ , Sec. 8, T. 13 N., R. 9 W., 7 miles from Marcella at the foot of the Boston Mountains. The spring forms the waters of one of the small tributaries of Coon Creek, which flows into the Devil's Fork of Red River. It is 150 feet below the highest point of the mountain and 1200 feet above sea level. There are three springs close together, only one of which is used for its medicinal properties, and the water from which was analyzed. This one has a strong flow, throwing out a stream of remarkably clear water, large enough to fill a two-inch pipe. There is a heavy deposit of iron in the spout through which the water flows, and in a box or trough in which it collects, making it frequently necessary to clean out the sediment from the latter. The water flows from the base of a bed of yellow ferruginous sandstone from 25 to 30 feet thick that is close to the top of the mountain and near the base of the Coal Measures. No other rock was observed on the mountain near the spring. Elev. 337 feet (approximately) Analysis of Water Hypothetical Combination | Constituents Silica SiO2 Chloride of Soda NaCl | Grains per U.S. gallon .70 .30 | Per cent of total solids 17.24 7.39 | |----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------| | Carbonate of Magnesia MgCO3 Carbonate of Lime CaCO3 Carbonate of Iron FeCO3 Sulphate of Lime CaSO4 Total | .70<br>1.08<br>.91<br>.37<br>4.06 | 17.24<br>26.60<br>22.42<br>9.11<br>100.00 | | Found | | | | Silica SiO <sub>2</sub> | .70<br>.12<br>.20<br>.54<br>.44<br>.26<br>1.62<br>.18<br>4.06 | 17.24<br>2.96<br>4.93<br>13.30<br>10.84<br>6.40<br>39.90<br>4.44<br>100.00 | Water collected by assistant T. C. Hopkins, December 18, 1891. Analysis by A. E. Menke. Total solids in solution, 4.75 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1. p. 32) ## BLANCHARD SPRING SW SE Sec. 5, T. 15 N., R. 11 W., 3/4 mile north of state Highway No. 14, the nearest town is Mountain View. This beautiful spring is in the Sylamore Recreational Area of the Ozark National Forest. It is on North Sylamore Creek a tributary of White River, it emerges from the mouth of a cave, 8 feet above the valley, it has an estimated discharge of from 1500 to 3000 gallans per minute. The water comes from the limestone is clear and palatable, has a teperature of about 70°. The spring will be kept in its natural pondition. Picnacking facilities will be maintaines downstream, such as wading, swimming, and boating, including shelters, concession building, and dam. The historic old water mill will be restored. Area designed for recreation use is approximately 4,000 by 1,000 geet. (H. R. Koen, Forest Supervisor) No. ## LIVINGSTON CREEK SPRING NW W SW SW Sec. 26, T. 16 N. R. 11 W., on West Livingston Creek the nearest town is Mountain View. This spring is in the Sylamore Recreational Area of the Ozark National Forest. It emerges from the mouth of a small cave at the bottom of hillside. Estimated discharge 2000 gallons per minute. Temperature 70°. The area near the spring is used by hunters as a camp ground. Recreation development of 25 acres in vicinity of spring is contemplated but detail plans have not yet been prepared. (H. R. Koen, Forest Supervisor) 1-15-38 No. ## SMYRNA SPRING $SW_{4}^{\frac{1}{4}}$ Sec. 2, T. 15 N. R. 13 W., on Roasting Ear Creek the nearest town is Mountain View. This spring is in the Sylamore Recreational Area of the Ozark National Forest. It emerges from bottom of creek at base of a bluff. Estimated discharge 1000 gallons per minute. Temperature 75°. This spring is said to flow muddy water at times. (H. R. Koen, Forest Supervisor). #### No. 255x 263 ## SULPHUR SERING T. 14 N., R. 11 W., $\frac{1}{2}$ of one mile west of Mountain View. Elev. 692 feet. (Arkansas Ozarks, p. 13) #### No. 256 264 ## LITHIA. SIRING. T. 14 N., R. 11 W., $\frac{1}{4}$ of one mile north of Mountain View on State Highway 66. Elev. 692 feet (approximately). (Arkansas Ozarks, p. 13) ### No. 257 265 ## BIG SIRING T. 14 N., R. 12 W., 9 miles west of Mountain View on State Highway 66. Elev. 692 feet (approximately). (Arkansas Ozarks, p. 13) #### No. 256 266 #### MOUNTAIN VIEW SIRINGS Sec. 5, T. 15 N., R. 11 W., Mountain View. The temperature of water is 55° F., and the discharge is 2,100 gallons per minute. Elev. 692 feet. (U. S. G. S. W 102) #### UNION COUNTY #### No. 250 267 #### BLANCHARD SPRING Sec. 33, T. 19 S., R. 15 W., at Blanchard Springs. The discharge of this spring is 30 gallons per minute. Elev. 179 feet (approximately). (U. S. G. S. P. 46) #### YAN BUREN COUNTY #### No. 260 268 #### STATE SALT SHRING Sec. 4, T. 10 N., R. 11 W?., east of Little Red River. 81.12 acres were sold to Christian L. Goodman by the state on July 20, 1857, for \$1.25 per acre. (State Land Commissioner's Office) ## CHOCTAW SPRING T. 10 H., R. 13 W., 13 miles south of Choctaw. The spring is owned by Will Lovell. Water issues from crevice of flat rock and is cold, clear and soft, and comes from the south side of a long slope. The discharge of this spring is 3 gallons per minute. Elev. 497 feet (approximately). (G. J. Shaw, 2105 State, Little Rock, Arkansas) No. ## SUGAR LOAF SPRINGS Sec. 20?, T. 10 N., R. 13 W. The Sugar Loaf Springs are situated about 3 miles southwest of Sugar Loaf Mountains. There are several fine springs of mineral water there. White Sulphur Spring and Puce Spring have about the same mineral content. The analysis is given below. There is also a good chalybeate spring in this location. Elev. 1000 feet (approximately) ## Analysis of Water Its principal constituents are: Free sulphuretted hydrogen. Bicarbonate of lime. Bicarbonate of magnesia. Chloride of sodium. Chloride of magnesium. (A. G. S. First Rept. of a Geological Reconnaissance-1857-1858) No. ## ROCK HOUSE SPRING NW. SE., Sec. 3, T. 11 N., R. 12 W., 5 miles southeast of Shirley. The spring is owned by George Johnson, Rt. #1, Shirley. Elev. 500 feet (approximately). (G. W. Washburn, Edgmont, Arkansas) #### WASHINGTON COUFTY No. #### MORROW'S SPRING Sec. 36, T. 14 M., R. 33 W., on the south side of the Boston Mountains in the vicinity of Morrow's School House on Cove Creek. Elev. 987 feet. (A. G. S. Rept., 1891, Vol. 1, p. 118) Ho. ## SULPHUR CITY SPRING NW NW NW Sec. 27, T. 15 N., R. 29 W., Sulphur City. This spring issues from the Wedington formation and gives rise to a local resort. Elev. 1304 feet. (U. S. G. S. W 145, p. 87) No. ## J. P. NEAL SPRING Sec. 19, T. 15 N., R. 31 W., Prairie Grove. The spring is owned by Col. J. P. Neal. This is another beautiful spring, flowing from limestone at or very near its point of contact with the Eureka shale. Elev. 1180 feet. (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) No. #### FAYETTEVILLE SPRING Sec. 2, T. 16 N., R. 30 W., Fayetteville. This spring is a fine flowing spring issuing from what appears to be the opening of a cavern in the Pentremital limestone. (Elev. 1334 feet approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) No. ## WHILIAM'S SPRING T. 16 N., R. 30 W., Fayetteville. The spring is owned by the City of Fayetteville. This spring is in an east-west ravine that extends through the northern part of Fayetteville, and, in its general character, resembles Lewis' Spring, but probably differs in its geologic position, inasmuch as the sandstones near at hand are very much disturbed, being completely turned on edge. May 28, 1887, it discharged 8607 gallons in twenty-four hours. Elev. 1334 feet. (A. G. S. Ann. Rept., 1891, vol. 1, p. 116) No. ## CATO'S SPRING T. 16 N., R. 30 W., Fayetteville. The spring is owned by the City of Payetteville. This spring is situated in a ravine at the foot of East Mountain. The water issues from the Pentremital limestone. On May 21, 1887, its measured flow was 12,067 gallons in twenty-four hours. Elev. 1334 feet (approximately) (A. G. S. Ann. Rept., 1891, vol. 1, p. 116) #### WASHINGTON COUNTY No. 278 ## LEWIS SPRING T. 16 N., R. 30 W., Fayetteville. This spring is situated between Dixon and Spring Streets. It issues from rocks that immediately overlie the Archimedes limestone. It does not flow from the edge of eroded strata, like the preceding, but is rather a welling up of water. May 23, 1887, its flow was at the rate of 26,221 gallons in twenty-four hours. Elev. 1334 feet. (A. G. S. Ann. Rept., 1891, vol. 1, p. 116) No. 279 ## BLUE WATER SPRING Near NW corner of $SW_{4}^{\frac{1}{4}}$ of the $NE_{4}^{\frac{1}{4}}$ , Sec. 7, T. 17 N., R. 28 W. This spring is in the bed of Brush Creek, a short distance above its union with White River. It is a very large spring and issues from the cherty limestone. Elev. 1200 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) No. 280 ## JOHNSON'S SPRING (BIG SPRING) SE<sup>1</sup>/<sub>4</sub> SW<sup>1</sup>/<sub>4</sub>, Sec. 15, T. 17 N., R. 30 W., Fayetteville. This spring is the largest spring examined and is widely known. It wells up from the cherty limestone, and covers an area of perhaps an eighth of an acre. On August 2, 1888, its measured capacity was 2,345,967 gallons in twenty-four hours. The flow from this and two smaller springs is utilized for power at Johnson's mill. On this date the mill flume was also gauged showing a flow of 2,562,491 gallons in twenty-four hours. This locality may, in the future, be very valuable from an economic standpoint, as a source of water supply for the city of Fayetteville. Elev. 1334 feet. (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) No. 281 ### AIR SPRING Sec. 36, T. 17 N., R. 32 W., near the center of section 36. This spring issues from the same limestone at or very near its point of contact with the Eureka shale. The water, as it flows from the rock, seems to be accompanied by a current of air. Elev. 1200 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) ## SPRINGDALE SPRING NO. 1 Sec. 23, T. 18 N., R. 30 W., Springdale. The spring is owned by J. Smith and J. W. Stults. There are a large number of other springs of similar character in this region. Some give a red sediment on standing and have other mineral properties. Among the more important of the springs are the Stults Spring, 2 miles northwest of town; Hewitt Spring, 3 miles east of town Graham Spring, 3 miles east of town; Henson Spring, 2 miles southeast of town, and Vernon Spring, 3 miles south of town. The temperature is 48° F. Elev. 1324 feet. (U. S. G. S. W 102, p. 388) No. ## SPRINGDALE SPRING HO. 2 Sec. 23, T. 18 N., R. 30 W., Springdale. The water is used for domestic purposes. The discharge of this spring is 80 gallons per minute. (U. S. G. S. W. 102, p. 386) No. #### SHILOH SPRINGS SW& SE&, Sec. 22, T. 18 N., R. 30 W., 3 miles northwest of Springdale. This spring is municipally owned and is the water supply of the town of Springdale. In 1925 the daily pumpage was 94,000 gallons. This water is used for all purposes including fire. Marketed by Springdale Water Plant, Springdale, Ark. Tem. of water is 48°. Elev. 1324. (Univ. of Ark. B 2, Hale) #### Analysis of Water Sample of water was submitted May, 1924. Condition: Turbidity, slight; Color and Odor, none. #### Determination | | Parts | |--------------------------------------------------------------------|-------------| | | ${\tt per}$ | | | million | | Silica SiO <sub>2</sub> | 18.10 | | Oxides of Iron and Alumi- | | | num Fe <sub>2</sub> 0 <sub>3</sub> -Al <sub>2</sub> 0 <sub>3</sub> | 11.80 | | Magnesium Mg | .41 | | Calcium Ca | 30.68 | | Sodium Na | 3.21 | | Chloride Cl | 4.97 | | Sulfate SO4 | 4.75 | #### 284 ## No. 276--Analysis continued | | Parts | |--------------------------|----------------| | | $\mathtt{per}$ | | | million | | Alkalinity | | | Methyl Orange | 74.50 | | Thenolphthalein | 0.00 | | Total Dissolved Solids - | 123.00 | ## Hypothetical Combination | | Parts | Grains | |---------------------------------------|---------|----------------| | • | per | $\mathtt{per}$ | | | million | gallon | | Silica SiO2 | 18.10 | 1.05 | | Oxides of Iron and Aluminum Fe203 | | | | Al203 | 11.80 | 0.69 | | Magnesium Sulfate MgSO4 | 2.03 | 0.12 | | Calcium Sulfate CaSO4 | 4.43 | 0.26 | | Calcium Carbonate CaCO3 | 73.48 | 4.29 | | Sodium Chloride CaCl | 8.18 | 0.48 | | | 118.02 | 6.89 | | Total Hardness | 119.88 | 6.99 | | Founds of Scale per 1000 gallons | | 1.040 | | Pounds of Hard Scale per 1000 gallons | | 0.248 | | Coefficient of Scale Hardness | | 0.24 | This water is of medium mineral content, forming but little scale and that of less than medium hardness. ### No. 285 ### ELM SPRINGS Sec. 25, T. 18 N., R. 31 W., Elm Springs near Brush Creek. This spring has clear, sparkling water which gushes from the cherty limestone, forming many springs along the bank of a small branch, locally called Grush Creek, a tributary of the Osage. Elev. 1324 feet.(approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 117) #### No. 236 286 ## SULPHUR SERINGS I mile south of Payetteville. Several so-called "sulphur springs," rise through the black bituminous shales, at the bottom of the sections, in the central part of Washington County. The water of one, which was obtained from John May's place, one mile south of Fayetteville, was found by the application of chemical reagents, to contain the principal constituents given in the analysis below. Elev. 1334 feet (approximately). ## Analysis of Water Sulphate of magnesia, (Epsom salts) Sulphate of alumina, a trace Sulphate of iron, a trace Bicarbonate of lime. Bicarbonate of magnesia. (A. G. S. First Rept. of a Geological Reconnaissance-1857-1858, p. 117) #### No. 272 297 ## KUYKENDALL SFRING This spring is located on the east fork of the Illinois River on Dr. Kuykendall's place. It is a fine chalybeate spring issuing from the bed of ferruginous sandstone of the millstone grit series. This water has a powerful deoxidising effect, instantly blackening a silver solution, even without the addition of ammonia; from this fact and the comparative small amount of carbonic acid present, it is probleable that the protoxide of iron present, is held in solution by some organic acid. This water will probably be found to have valuable alterative and tonic effects combined. (A. G. S. First Rept. of a Geological Reconnaissance-1857-1858, p. 119) #### No. 200 288 ## SULPHUR SFRING 1 mile from Dr. Kuykendall's. 289 No. 283--Continued ## Analysis of Water Free sulphuretted hydrogen Chloride of magnesium Chloride of sodium Only a trace of sulphates Bicarbonate of lime Bicarbonate of magnesia (A. G. S. First Rept. of a Geological Reconnaissance-1857-1858) #### WHITE COUNTY No. 220 290 #### ESSEX STRING Sec. 19, T. 6 N., R. 8 W., near Essex. Elev. 250 feet (approximately). (U. S. G. S. W 102) No. 282 291 #### BEEBE SPRING Sec. 14, T. 6 N., R. 9 W., near Beebe. The discharge of this spring is 60 gallons per minute. The mineral content is iron, sulphur, and magnesia. Elev. 244.2 feet. (U. S. G. S. W 102) No. 202 292 ### ELLIOTT SPRING Sec. 20, T. 6 N., R. 10 W., at Peach Orchard Gap. Another chalybeate spring of the same character as the Springfield Town Spring, No. 76, in Conway County. Elev. 250 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 115) No. 284 293 ## GRIFFIE SFRING T. 7 N., R. 7 W., near Searcy. Elev. 245 feet (approximately). (Arkansas Ozarks) #### WHITE COUNTY #### 294 No. 285--Continued In order to ascertain whether the amount of mineral matter in solution varied much, water was collected again on the 11th of August, 1891, by R. N. Brackett, and the following determinations made: Total solids, 18.72 grains per U. S. gallon. Sulphuretted hydrogen, (0.09 grains per U. S. gallon. (0.22 cubic inches. (A. G. S. Ann. Rept., 1891, vol. 1, p. 82-83) ### No. 266 295 ## GRIFFIN SPRING SW4 FE4, Sec. 28, T. 8 N., R. 7 W., about 4 miles north slightly west from the town of Searcy. The water issues from rocks of the Earren Coal Measures and is strongly chalybeate. Immediately north of the spring is an escarpment from 125 to 175 feet high with a bed of sandstone at the top, which has a low dip to the north, slightly west. Elev. 245 feet (approximately). ## Analysis of Water Hypothetical Combination | Constituents Silica SiO <sub>2</sub> | Grains per U.S. gallon 1.54 .06 .01 1.15 1.82 .22 2.16 .11 7.07 | | |---------------------------------------|-----------------------------------------------------------------|------------------------------------| | Silica SiO <sub>2</sub> | 1.54<br>.02<br>.01<br>.33<br>1.36<br>.04 | 6.13<br>.08<br>.04<br>1.32<br>5.42 | ## No. 235 294 ## SEARCY SULFHUR SFRING T. 7 N., R. 7 W., at Searcy. The water comes from rocks of the Barren Coal Measures. Gas was bubbling up from the water when the collection was made; there was a strong odor of sulphuretted hydrogen, but lead paper showed only a slight reaction for it. Elev. 245 feet (approximately) ### Analysis of Water | Constituents | Grains per U.S. gallon | Per cent of total solids | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------| | Silica SiO <sub>2</sub> | 1.36<br>2.89<br>.46<br>5.49<br>1.19<br>3.25<br>2.99<br>.04<br>.13<br>17.80<br>16.29<br>34.09 | 7.61<br>16.21<br>2.67<br>30.81<br>6.77<br>18.23<br>16.77<br>.21<br>.72 | | Found | | | | Silica SiO2 Sodium Na Potassium K Magnesium Mg Calcium Ca Iron Fe Aluminum Al Sulphuric Acid SO4 Carbonic Acid CO3 Chlorine Cl Sulphuretted Hydrogen H <sub>2</sub> S Total | 1.36<br>4.56<br>.24<br>.34<br>1.30<br>.01<br>.02<br>2.16<br>22.12<br>1.97<br>trace<br>34.08 | 3.99<br>13.38<br>.71<br>1.01<br>3.83<br>.04<br>.07<br>6.35<br>64.83<br>5.79<br>trace<br>100.00 | 100.46 per cent account for. Water collected by assistant J. P. Smith, March 23, 1888. Analysis by R. N. Brackett and J. P. Smith. Temperature of air, 58° F.; of water, 59° F. Total solid material in solution, 17.73 grains per U. S. gallon. #### WHITE COURTY 295 ## No. 284--Analysis continued | | Grains per | Per cent | |--------------------------------|------------|----------| | | U.S. | of total | | | gallon | solids | | Sulphuric Acid SO <sub>4</sub> | 1.77 | 7.04 | | Carbonic Acid CO3 | 19.14 | 76.23 | | Chlorine Cl | •90 | 3.58 | | Total | 25.11 | 100.00 | Water collected by assistant J. P. Smith, March 23, 1888. Temperature of air, 50° F.; of water, 58° F. Total solid material in solution, 7.33 grains per U. S. gallon. Carbonic Acid (CO<sub>2</sub>), free and for bicarbonates, 18.05 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 51) #### No. 220 296 ## ARMSTRONG SPRING $SW_{4}$ , Sec. 33, T. 8 N., R. 8 W., Armstrong Springs. The water in this spring comes from arenaceous shale of the Barren Coal Measures, and is near the axis of the Searcy anticline. The spring is five feet deep; the water is drawn through a pipe from the bottom, and is clear, odorless and sparkling; it has a slightly chalybeate taste, and forms the usual yellow deposit at the end of the waste-pipe. ## Analysis of Water Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent of total solids | |--------------------------------------------|------------------------------|--------------------------| | Silica SiO2 | 3.04 | 28.07 | | Chloride of Scda NaCl | •90 | 8.31 | | Carbonate of Soda Na CO3 | 1.27 | 11.73 | | Carbonate of Magnesia MgCO3 | 1.12 | 10.34 | | Carbonate of Lime CaCO3 | 3.32 | 30.66 | | Sulphate of Soda Na2SO4 | •69 | 6.37 | | Sulphate of Iron PeSO4 | .23 | 2.12 | | Sulphate of Alumina $(\bar{A}l_2(SO_4)_3)$ | .26 | 2.40 | | Total | 10.83 | 100.00 | | | Grains per<br>U.S.<br>gallon | Per cent<br>of total<br>solids | |-------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------| | Found | | | | Silica SiO2 | 3.04<br>1.13<br>trace<br>.32<br>1.33<br>trace<br>.08<br>.04<br>.83<br>3.51 | 28.07<br>10.43<br>trace<br>2.96<br>12.28<br>trace<br>.74<br>.37<br>7.66 | | Chlorine Cl | .55<br>10.83 | 5.08<br>100.00 | Water collected by assistant J. H. Means, June 5, 1891. Total solid material in solution, 9.39 grains per U. S. gallon. Temperature of the air, 81.68° F.; of water, 61.88° F. (A. G. S. Ann. Rept., 1891, vol. 1, p. 27) No. ### BRADFORD SPRING Sec. 6, T. 9 N., R. 4 W., Bradford. The spring is owned by O. J. Davis. The mineral content of this spring is iron, sulphur, and magnesia. The discharge is 5 gallons per minute. Elev. 242 feet. (U. S. G. S. W 102) No. ## MINDUAL SPRING Sec. 6, T. 9 H., R. 5 W., near Steprock. The spring is owned by D. E. Hawse. This spring, charged with mineral matter, is located on the land of D. R. Hawse. Elev. 250 feet (approximately). (U. S. G. S. W 102) ## CHICKALAH SPRING Sec. 10, T. 6 N., R. 22 W., Chickelah. The spring is owned by J. F. Choate. The mineral content of this spring is sulphur and gas. The discharge is 2 gallons per minute. Elev. 342 feet. (U. S. G. S. W 102) No. ## SULPHUR SPRINGS SED NWW, Sec. 10, T. 6 N., R. 22 W., south of Spring Mountain. The spring is owned by New York Mercantile Trust Company, New York and St. Louis. These five springs are highly charged with sulphuretted hydrogen. Elev. 500 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 115) No. ## CHALYBEATE SPRING Sec. 28, T. 6 N., R. 22 W., south of Chickalah Mountain. There are two chalybeate springs found at this location. Elev. 750 feet (approximately). (A. G. S. Ann. Rept., 1891, vol. 1, p. 116) No. ## HOREN DICKERS Sec. 29-32, T. 7 N., R. 21 W., west side of Mt. Nebo, and about 100 yards south of Gum Spring. Dickens springs are named from a Mr. Dickens who is said to have been the first settler in that region. These springs flow from a mass of yellow ferruginous sandstone, the talus from the steep bluff above, the rock of which belong to the Barren Coal Measures. They are two in number, the outlets being not more than two feet apart, so close, in fact, that in their present natural condition the waters from both mingle in the same pool. Their close proximity would indicate that the two might be separate outlets of the same spring, but the one to the south gave a very perceptible odor of sulphur, which could not be noticed in the other. Mater collected from these springs by assistant G. D. Harris, hovember 15, 1889, gave total solids, 7.77 grains per U. S. gallon. Elev. 1750 feet (approximately). ## YELL COUNTY ## 30<del>2</del> ## No. 200 -- Continued # Analysis of Water Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon .46 .30 2.10 1.59 2.04 .50 .47 7.46 | Fer cent<br>of total<br>solids<br>6.17<br>4.02<br>28.15<br>21.31<br>27.35<br>6.70<br>6.30<br>100.00 | |--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------| | Found | | | | Silica SiO <sub>2</sub> Sodium Na Magnesium Mg Calcium Ca Iron Fe Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> Chlorine Cl | .46<br>.72<br>.45<br>.95<br>.24<br>.33<br>4.12<br>.18<br>7.45 | 6.17<br>9.66<br>6.12<br>12.75<br>3.22<br>4.41<br>55.28<br>2.40<br>100.00 | Water collected by assistant T. C. Hopkins, Dec. 24, 1891. Analysis by A. E. Menke. Temperature of air, 57.2° F.; of water, 55.4° F. Total solid material in solution, 8.75 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 72-73) #### No. 234 303 ## SOUTH DICKENS SHRING Sec. 29-32, T. 7 N., R. 21 W., west side of Mt. Nebo, and about 100 yards south of the Gum Spring. (Note on No. 293, North Dickens Spring, applies to this spring) Elev. 1750 (approximately). #### YELL COUNTY No. 204--Continued ## Analysis of Water ## Hypothetical Combination | Constituents | Grains per<br>U.S.<br>gallon | Per cent<br>of total<br>solids | |--------------|-------------------------------------------------------|------------------------------------------------------------------| | Silica SiO2 | .52<br>.63<br>1.66<br>1.45<br>1.89<br>.17<br>.68 | 7.43<br>9.00<br>23.71<br>20.71<br>27.00<br>2.43<br>9.71<br>99.99 | | Found | | | | Silica SiO2 | .52<br>.87<br>.41<br>.95<br>.03<br>.48<br>3.46<br>.21 | 7.45 12.46 5.87 13.61 1.15 6.88 49.57 3.01 100.00 | Water collected by assistant T. C. Hopkins, Dec. 24, 1891. Analysis by A. E. Menke. Temperature of air, 57.2° F.; of water, 55.4° F. Total solid material in solution, 8.75 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 71) ## No. 225 804 ## DARLING SPRING Sec. 29-32, T. 7 N., R. 21 W., Mt. Nebo. This spring is about 175 feet below the bottom of the cap rock of Mt. Nebo, and seems to come from the black shales. It is situated on the bench on the west side of the mountain. When the sample for analysis was collected the water was quite clear, with the exception of a slight precipitate of oxide or hydroxide of iron; when it reached the Survey laboratory it had formed a heavy, dark colored precipitate of iron. Elev. 1750 feet (approximately). #### YELL COUNTY 304 No. 295--Continued ## Analysis of Water Hypothetical Combination | Silica SiO <sub>2</sub> | Grains per U.S. gallon 1.04 .49 .69 .18 .39 1.07 .20 .99 .31 5.35 | Per cent of total solids 19.25 9.16 12.90 3.36 7.29 20.00 3.74 18.51 5.79 100.00 | |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------| | Found | | | | Silica SiO <sub>2</sub> Sodium Na Potassium K Magnesium Mg Calcium Ca Iron Fe Alumina Al Sulphuric Acid SO <sub>4</sub> Carbonic Acid CO <sub>3</sub> calculated - Chlorine Cl Total | 1.04<br>.49<br>.11<br>.11<br>.43<br>.47<br>.05<br>.88<br>1.50<br>.29<br>5.37 | 19.37<br>9.12<br>2.05<br>2.05<br>8.01<br>8.75<br>.93<br>16.39<br>27.93<br>5.40<br>100.00 | Water collected by J. C. Branner, October 26, 1888. Analysis by J. P. Smith. Temperature of air, November 13, 1889, 59.1° F.; of water, 42° F. Total solid material in solution, 5.89 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 70) #### No. 296 305 #### GUM SPRING Sec. 29-32, T. 7 N., R. 21 W., on the bench of Mt. Nebo, close to the foot of the cliff on the west side. This spring issues from a mass of debris at about the same geological level as the Dickens springs. The stream flowing from it is remarkably clear and cold, about half filling a 1-inch pipe. It is said to vary little, if any, in either volume or temperature during the year. The water is odorless and almost tasteless. There is a considerable deposit of iron about the outlet. Elev. 1750 feet (approximately) ## Analysis of Water ## Hypothetical Combination | Constituents Silica SiO2 | Grains per U.S. gallon .64 .23 .92 1.21 1.01 .34 4.35 | Per cent of total solids 14.71 5.29 21.15 27.81 23.22 7.82 100.00 | |---------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------| | Found | | | | Silica SiO2 | .64<br>.09<br>.26<br>.58<br>.49<br>.24<br>1.91<br>.14<br>4.35 | 14.71<br>2.07<br>5.98<br>13.33<br>11.26<br>5.52<br>43.91<br>3.22<br>100.00 | Water collected by assistant T. C. Hopkins, Dec. 24, 1891. Analysis by A. E. Menke. Temperature of air, 46.4° F.; temperature of water, 58.1°F. Total solid material in solution, 5.00 grains per U. S. gallon. (A. G. S. Ann. Rept., 1891, vol. 1, p. 74)